Advancing Multi-Messenger Astrophysics and Dark Matter Searches with XENONnT and the Top SiPM Array of Xenoscope

Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.)

vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich

von Ricardo José Mota Peres aus

Portugal

Promotionskommission

Prof. Dr. Laura Baudis (Vorsitz) Prof. Dr. Ben Kilminster Dr. Michelle Galloway

Zürich, 2023

Contents

1.	The	search for dark matter	1
	1.1.	Evidence for dark matter	1
	1.2.	Dark matter candidates	4
		1.2.1. The Standard Model of particle physics	4
		1.2.2. The WIMP	7
		1.2.3. Other dark matter candidates	8
	1.3.	Detecting dark matter	9
		1.3.1. Direct dark matter detection	11
		1.3.2. Direct detection experiments	14
2.	The	XENONnT experiment	17
	2.1.	Xenon as a particle detector target	17
		2.1.1. Overview of xenon properties	17
		2.1.2. From interaction to signal	20
	2.2.	The dual-phase TPC	23
	2.3.	The XENONnT TPC	27
	2.4.	The XENONnT facility	29
3.	3D e	electric field simulations of the XENONnT TPC	37
	3.1.	BEM for electrostatic field simulation	38
	3.2.	The XENONnT geometry	40
	3.3.	Results of the 3D electrostatic field simulations	47
		3.3.1. Drift field	48
		3.3.2. Extraction field	52
		3.3.3. Field near perpendicular wires	53
		3.3.4. Field near PMT arrays	59
	3.4.	Outlook	60

4.	Ana	alysis and results from the first science run of XENONnT	63
	4.1.	SR0 conditions and acquired data	63
	4.2.	Analysis of SR0	66
		4.2.1. Event reconstruction	67
		4.2.2. Event correction	69
		4.2.3. Event selection	71
		4.2.4. The S2 width cut	73
	4.3.	Results of the low-energy ER search	84
	4.4.	Results of the low-energy NR search	86
5.	Mu	lti-messenger astrophysics in XENONnT	91
	5.1.	Supernova neutrinos	91
	5.2.	The supernova early warning system	94
	5.3.	Supernova neutrinos detection in LXe TPCs	96
		5.3.1. $CE\nu NS$	96
		5.3.2. Simulation of SN neutrinos in XENONnT	98
		5.3.3. Significance of SN detection in current and next generation dark	
		matter experiments \ldots \ldots \ldots \ldots \ldots \ldots 1	.04
	5.4.	Implementation of XENONnT in SNEWS	.04
		5.4.1. Absolute timing in XENONnT	.06
		5.4.2. Connection and communication to SNEWS	.08
6.	Xen	oscope, a full-height DARWIN demonstrator 1	11
	6.1.	The DARWIN project	11
	6.2.	The Xenoscope facility 1	14
		6.2.1. Cryogenics and xenon circulation	15
		6.2.2. Filling, recuperation and storage of xenon	.17
		6.2.3. Slow control system	20
		6.2.4. Overview of a Xenoscope run	.21
	6.3.	The Xenoscope early science project	22
		6.3.1. Purity monitor phase	22
		6.3.2. TPC phase	26
7.	The	top SiPM array of Xenoscope 1	l 29
	7.1.	Silicon photomultiplier sensors	129
		7.1.1. Silicon photodiodes	30
		7.1.2. Avalanche photodiodes	132

		7.1.3.	The SiPM unit or MPPC	134
	7.2.	The to	p array of Xenoscope	138
	7.3.	SiPM o	characterisation	145
		7.3.1.	Characterisation methodology	145
		7.3.2.	Characterisation of the VUV4 SiPM units and the summed readou	t156
		7.3.3.	The quads of Xenoscope	164
	7.4.	First co	ommissioning results of the top array of Xenoscope	168
	7.5.	Top ar	ray signal simulation	171
8.	Sum	mary a	nd conclusions	181
A.	Pre-a	amplifi	cation circuit for the "tile" summed readout	185
B.	Main	n chara	cterisation values of the SiPM units of Xenoscope	187
C.	SiPN	/I data i	in air	193
Lis	st of f	igures		197
Lis	st of t	ables		203
Lis	st of A	Abbrevi	iations	205
Bil	bliog	raphy		211

List of figures

1.1.	Bullet cluster and rotation velocity curve of NGC 3198	3
1.2.	CMB power spectrum	4
1.3.	The Standard Model of particle physics	5
1.4.	Dark matter density as a function of time after the Big Bang (freeze-out)	8
1 <i>.</i> 5.	DM candidates	9
1.6.	Schematic of DM detection channels	10
1. 7.	WIMP velocity distribution and SI interaction rates in common targets	12
1.8.	Current SI WIMP-nucleon cross-section limits and next generation Xe and Ar TPC projections	16
2.1.	Timeline of the XENON project	18
2.2.	Photon absorption coefficient as a function of the incident photon energy for liquid xenon	19
2.3.	Light and charge yields for ER and NR interactions	22
2.4.	Dual-phase TPC working principle	24
2.5	. Simualted ER and NR bands	27
2.6	. CAD render of the XENONnT TPC	28
2.7	7. Picture of the XENONnT water tank and service building.	30
2.8	3. Electron lifetime evolution in XENONnT SR0	31
2.9	9. Evolution of the activity concentration of ²²² Rn in XENONnT SR0	32

2.10.	Picture of the XENONnT neutron veto system.	34
3.1.	XENONnT detector geometry implemented in KEMField.	43
3.2.	Perpendicular wires' geometry.	44
3.3.	Field cage geometry and resistive circuit.	45
3.4.	Detailed PMT model	46
3.5.	Simulated drift field results	50
3.6.	Drift field streamlines.	51
3.7.	Simulated extraction field results	54
3.8.	Field and streamlines near the perpendicular wires	56
3.9.	Field distortion correction near the perpendicular wires	57
3.10.	Perpendicular wires effect comparison with data.	58
3.11.	Electric field close to the PMTs with the bottom screen at high voltage.	59
4.1.	Cumulative livetime of SR0	65
4.2.	XENONnT SR0 Doke plot	66
4.3.	Example waveform in XENONnT	69
4.4.	Drift time of the gate and cathode. Longitudinal diffusion fit	76
4.5.	S2 width cut boundaries	79
4.6.	S2 width cut acceptance model	81
4.7.	Events removed by the S2 width cut from the low-energy ER dataset .	82
4.8.	Events removed by the S2 width cut from the WIMP search dataset $\ . \ .$	83
4.9.	Detector efficiency and background model fit of the low-energy ER dataset.	85
4.11.	. SI and SD WIMP-nucleon cross-section upper limits	9 0
5.1.	Neutrino luminosity and mean energy of a 27 M_\odot progenitor $~~\ldots~$.	93

LIST OF FIGURES

5.2.	Helm form factor and CEvNSdifferential cross-section matrix	98
5.3.	SN neutrino time and energy differential rates	99
5.4.	SN neutrinos interactions on active target	100
5.5.	Flow-chart of the SN simulation framework.	101
5.6.	Signal and background shapes and rates.	103
5.7.	SN detection significance for current and next generation LXe TPCs	105
5.8.	Diagram of the GPS time correction infrastructure	107
5.9.	Schematic and effect of the GPS correction.	109
6.1.	DARWIN baseline design.	112
6.2.	Xenoscope facility at UZH.	114
6.3.	Xenoscope P&ID.	116
6.4.	Pressure in the storage array as a function of the stored xenon mass	118
6.5.	Schematics of the PM and TPC setups of Xenoscope	124
6. 6 .	Results of the PM run of Xenoscope.	125
7.1.	PN junction and APD schematics	131
7.2.	SiPM circuit and microscopic view	134
7.3.	Schematic cross-talk processes.	136
7.4.	SiPM non-linearity at high ilumination	137
7.5.	Summed readout tiles	138
7.6.	Top array tile labelling and picture	139
7.7.	Top array components	141
7.8.	Cabling and connector blocks for the top array of Xenoscope	143
7.9.	LED calibration cabling in Xenoscope	144
7.10). The top array in LArS	147

7.11. LArS cabling and test setup
7.12. Example waveforms
7.13. Breakdown voltage with LED ON
7.14. Dark count data event selection and SPE fit
7.15. Gain as a function of bias voltage and different temperatures 157
7.16. Breakown voltage as a function of temperature
7.17. Effect of the SPE resolution
7.18. SPE resolution as a function of gain at different temperatures 160
7.19. DCR as a function of gain at different temperatures
7.20. Heat map of the DCR as a function of temperature and gain 162
7.21. CTP as a function of gain at different temperatures
7.22. Afterpulses in LED on datasets
7.23. BV values distribution
7.24. Gain values distribution
7.25. SPE resolution values distribution
7.26. DCR values distribution
7.27. CTP values distribution
7.28. Calculated breakdown voltages of the tiles at room temperature 171
7.29. Electron transversal diffusion in liquid xenon as a function of the applied electric field
7.30. Time and position of the electrons ejected from the photocathode 174
7.31. Electron focusing effect on gate electrode
7.32. LCE maps construction
7.33. Simulated photocathode signal hit patterns for different array configu- rations

LIST OF FIGURES

A.1.	Pre-amplification circuit of the summed readout.	186
C.1.	Waveforms for different light levels in each tile	194
C.2.	Amplitude of signal at different voltages with constant light level (LED $V = 12345 V. \dots $	195

List of tables

2.1.	Main properties of xenon	20
3.1.	Elements of the XENONnT detector considered in the KEMField imple- mentation.	41
3.2.	Designed voltages and sizes of XENONnT electrodes	44
4.1.	Tuned parameters of the S2 width cut.	80
4.2.	Background model of low-energy ER data	86
4.3.	NR expected and observed events	88
7.1.	Breakdown voltage measured at different temperatures for a single quad unit and a fully loaded tile.	158
7.2.	Breakdown voltages of each tile in the Xenoscope top array at room temperature.	171
7.3.	Physical parameters of the signal simulations.	178
B.1.	Breakdown voltage of the Xenoscope quad modules	187
B.2.	Gain, SPE resolution, DCR and CTP measurements of the Xenoscope quad modules.	189