WHAT IS A QUANTUM FIELD THEORY?

A First Introduction for Mathematicians

MICHEL TALAGRAND

Contents

Intr	Introduction		page 1
Par	tI B	Basics	7
1	Preli	minaries	9
	1.1	Dimension	9
	1.2	Notation	10
	1.3	Distributions	12
	1.4	The Delta Function	14
	1.5	The Fourier Transform	17
2	Basic	es of Non-relativistic Quantum Mechanics	21
	2.1	Basic Setting	22
	2.2	Measuring Two Different Observables on the Same System	27
	2.3	Uncertainty	28
	2.4	Finite versus Continuous Models	30
	2.5	Position State Space for a Particle	31
	2.6	Unitary Operators	38
	2.7	Momentum State Space for a Particle	39
	2.8	Dirac's Formalism	40
	2.9	Why Are Unitary Transformations Ubiquitous?	46
	2.10	Unitary Representations of Groups	47
	2.11	Projective versus True Unitary Representations	49
	2.12	Mathematicians Look at Projective Representations	50
	2.13	Projective Representations of $\mathbb R$	51
	2.14	One-parameter Unitary Groups and Stone's Theorem	52
	2.15	Time-evolution	59

viii Contents

	2.16	Schrödinger and Heisenberg Pictures	62
	2.17	A First Contact with Creation and Annihilation Operators	64
	2.18	The Harmonic Oscillator	66
3	Non-	relativistic Quantum Fields	7.3
	3.1	Tensor Products	7.3
	3.2	Symmetric Tensors	76
	3.3	Creation and Annihilation Operators	78
	3.4	Boson Fock Space	82
	3.5	Unitary Evolution in the Boson Fock Space	84
	3.6	Boson Fock Space and Collections of Harmonic Oscillators	86
	3.7	Explicit Formulas: Position Space	88
	3.8	Explicit Formulas: Momentum Space	92
	3.9	Universe in a Box	93
	3.10	Quantum Fields: Quantizing Spaces of Functions	94
4	The L	orentz Group and the Poincaré Group	102
	4.1	Notation and Basics	102
	4.2	Rotations	107
	4.3	Pure Boosts	108
	4.4	The Mass Shell and Its Invariant Measure	111
	4.5	More about Unitary Representations	115
	4.6	Group Actions and Representations	118
	4.7	Quantum Mechanics, Special Relativity and the	
		Poincaré Group	120
	4.8	A Fundamental Representation of the Poincaré Group	122
	4.9	Particles and Representations	125
	4.10	The States $ p\rangle$ and $ p\rangle$	128
	4.11	The Physicists' Way	129
5	The Massive Scalar Free Field		132
	5.1	Intrinsic Definition	132
	5.2	Explicit Formulas	140
	5.3	Time-evolution	142
	5.4	Lorentz Invariant Formulas	143
6	Quant	ization	145
	6.1	The Klein-Gordon Equation	146
	6.2	Naive Quantization of the Klein-Gordon Field	147
	6.3	Road Map	150
	6.4	Lagrangian Mechanics	151
	6.5	From Lagrangian Mechanics to Hamiltonian Mechanics	156

Contents	ix

	6.6	Canonical Quantization and Quadratic Potentials	161
	6.7	Quantization through the Hamiltonian	163
	6.8	Ultraviolet Divergences	164
	6.9	Quantization through Equal-time Commutation Relations	165
	6.10	Caveat	172
	6.11	Hamiltonian	173
7	The C	Casimir Effect	176
	7.1	Vacuum Energy	176
	7.2	Regularization	177
Par	tII S	pin	181
8	Repre	esentations of the Orthogonal and the Lorentz Group	183
	8.1	The Groups $SU(2)$ and $SL(2,\mathbb{C})$	183
	8.2	A Fundamental Family of Representations of $SU(2)$	187
	8.3	Tensor Products of Representations	190
	8.4	$SL(2,\mathbb{C})$ as a Universal Cover of the Lorentz Group	192
	8.5	An Intrinsically Projective Representation	195
	8.6	Deprojectivization	199
	8.7	A Brief Introduction to Spin	199
	8.8	Spin as an Observable	200
	8.9	Parity and the Double Cover $SL^+(2,\mathbb{C})$ of $O^+(1,3)$	201
	8.10	The Parity Operator and the Dirac Matrices	204
9	Repre	esentations of the Poincaré Group	208
	9.1	The Physicists' Way	209
	9.2	The Group \mathcal{P}^*	211
	9.3	Road Map	212
		9.3.1 How to Construct Representations?	213
		9.3.2 Surviving the Formulas	213
		9.3.3 Classifying the Representations	214
		9.3.4 Massive Particles	214
		9.3.5 Massless Particles	214
		9.3.6 Massless Particles and Parity	215
	9.4	Elementary Construction of Induced Representations	215
	9.5	Variegated Formulas	217
	9.6	Fundamental Representations	223
		9.6.1 Massive Particles	223
		9.6.2 Massless Particles	223
	9.7	Particles, Spin, Representations	228

x Contents

	9.8	Abstract Presentation of Induced Representations	232
	9.9	Particles and Parity	235
	9.10	Dirac Equation	236
	9.11	History of the Dirac Equation	238
	9.12	Parity and Massless Particles	240
	9.13	Photons	245
10	Basic	Free Fields	250
	10.1	Charged Particles and Anti-particles	251
	10.2	Lorentz Covariant Families of Fields	253
	10.3	Road Map I	255
	10.4	Form of the Annihilation Part of the Fields	256
	10.5	Explicit Formulas	260
	10.6	Creation Part of the Fields	262
	10.7	Microcausality	264
	10.8	Road Map II	267
	10.9	The Simplest Case $(N = 1)$	268
	10.10	A Very Simple Case $(N = 4)$	268
	10.11	The Massive Vector Field $(N = 4)$	269
	10.12	The Classical Massive Vector Field	271
	10.13	Massive Weyl Spinors, First Attempt $(N = 2)$	273
	10.14	Fermion Fock Space	275
	10.15	Massive Weyl Spinors, Second Attempt	279
	10.16	Equation of Motion for the Massive Weyl Spinor	281
	10.17	Massless Weyl Spinors	283
	10.18	Parity	284
	10.19	Dirac Field	285
	10.20	Dirac Field and Classical Mechanics	288
	10.21	Majorana Field	293
	10.22	Lack of a Suitable Field for Photons	293
Par	t III In	teractions	297
11	Pertur	bation Theory	299
	11.1	Time-independent Perturbation Theory	299
	11.2	Time-dependent Perturbation Theory and the Interaction	
		Picture	303
	11.3	Transition Rates	307
	11.4	A Side Story: Oscillating Interactions	310
	11.5	Interaction of a Particle with a Field: A Toy Model	312

Contents xi

12	Scatte	ring, the Scattering Matrix and Cross-Sections	322
	12.1	Heuristics in a Simple Case of Classical Mechanics	323
	12.2	Non-relativistic Quantum Scattering by a Potential	324
	12.3	The Scattering Matrix in Non-relativistic Quantum Scattering	330
	12.4	The Scattering Matrix and Cross-Sections, I	333
	12.5	Scattering Matrix in Quantum Field Theory	343
	12.6	Scattering Matrix and Cross-Sections, II	345
13	The So	cattering Matrix in Perturbation Theory	351
	13.1	The Scattering Matrix and the Dyson Series	351
	13.2	Prologue: The Born Approximation in Scattering	
		by a Potential	353
	13.3	Interaction Terms in Hamiltonians	354
	13.4	Prickliness of the Interaction Picture	355
	13.5	Admissible Hamiltonian Densities	357
	13.6	Simple Models for Interacting Particles	359
	13.7	A Computation at the First Order	361
	13.8	Wick's Theorem	365
	13.9	Interlude: Summing the Dyson Series	367
	13.10	The Feynman Propagator	369
	13.11	Redefining the Incoming and Outgoing States	373
	13.12	A Computation at Order Two with Trees	373
	13.13	Feynman Diagrams and Symmetry Factors	379
	13.14	The ϕ^4 Model	384
	13.15	A Closer Look at Symmetry Factors	387
	13.16	A Computation at Order Two with One Loop	389
	13.17	One Loop: A Simple Case of Renormalization	392
	13.18	Wick Rotation and Feynman Parameters	395
	13.19	Explicit Formulas	401
	13.20	Counter-terms, I	403
	13.21	Two Loops: Toward the Central Issues	404
	13.22	Analysis of Diagrams	406
	13.23	Cancellation of Infinities	409
	13.24	Counter-terms, II	414
14	Intera	cting Quantum Fields	420
	14.1	Interacting Quantum Fields and Particles	421
	14.2	Road Map I	422
	14.3	The Gell-Mann—Low Formula and Theorem	423
	14.4	Adiabatic Switching of the Interaction	430
	14.5	Diagrammatic Interpretation of the Gell-Mann—Low Theorem	436

xii Contents

	14.6	Road Map II	440
	14.7	Green Functions and S-matrix	441
	14.8	The Dressed Propagator in the Källén-Lehmann Representation	447
	14.9	Diagrammatic Computation of the Dressed Propagator	453
	14.10	Mass Renormalization	457
	14.11	Difficult Reconciliation	460
	14.12	Field Renormalization	462
	14.13	Putting It All Together	467
	14.14	Conclusions	469
Par	tIV R	enormalization	471
15	Prolog	gue: Power Counting	473
	15.1	What Is Power Counting?	473
	15.2	Weinberg's Power Counting Theorem	480
	15.3	The Fundamental Space $\ker \mathcal{L}$	483
	15.4	Power Counting in Feynman Diagrams	484
	15.5	Proof of Theorem 15.3.1	489
	15.6	A Side Story: Loops	490
	15.7	Parameterization of Diagram Integrals	492
	15.8	Parameterization of Diagram Integrals by Loops	494
16	The B	ogoliubov-Parasiuk-Hepp-Zimmermann Scheme	496
	16.1	Overall Approach	497
	16.2	Simple Examples	498
	16.3	Canonical Flow and the Taylor Operation	500
	16.4	Subdiagrams	503
	16.5	Forests	504
	16.6	Renormalizing the Integrand: The Forest Formula	506
	16.7	Diagrams That Need Not Be 1-PI	510
	16.8	Interpretation	510
	16.9	Specificity of the Parameterization	512
17	Count	er-terms	514
	17.1	What Is the Counter-term Method?	515
	17.2	A Very Simple Case: Coupling Constant Renormalization	516
	17.3	Mass and Field Renormalization: Diagrammatics	518
	17.4	The BPHZ Renormalization Prescription	524
	17.5	Cancelling Divergences with Counter-terms	525
	17.6	Determining the Counter-terms from BPHZ	527
	17.7	From BPHZ to the Counter-term Method	531

		Contents	xiii
	17.8	What Happened to Subdiagrams?	535
	17.9	Field Renormalization, II	538
18	Contr	rolling Singularities	542
	18.1	Basic Principle	542
	18.2	Zimmermann's Theorem	546
	18.3	Proof of Proposition 18.2.12	556
	18.4	A Side Story: Feynman Diagrams and Wick Rotations	560
19	Proof	of Convergence of the BPHZ Scheme	563
	19.1	Proof of Theorem 16.1.1	563
	19.2	Simple Facts	565
	19.3	Grouping the Terms	567
	19.4	Bringing Forward Cancellation	575
	19.5	Regular Rational Functions	578
	19.6	Controlling the Degree	583
Par	tV C	omplements	591
App	endix A	A Complements on Representations	593
-11	A.1	Projective Unitary Representations of ℝ	593
	A.2	Continuous Projective Unitary Representations	596
	A.3	Projective Finite-dimensional Representations	598
	A.4	Induced Representations for Finite Groups	600
	A.5	Representations of Finite Semidirect Products	604
	A.6	Representations of Compact Groups	608
App	endix I	B End of Proof of Stone's Theorem	612
Арр	endix (C Canonical Commutation Relations	616
	C.1	First Manipulations	616
	C.2	Coherent States for the Harmonic Oscillator	618
	C.3	The Stone-von Neumann Theorem	621
	C.4	Non-equivalent Unitary Representations	627
	C.5	Orthogonal Ground States!	632
App	endix I	A Crash Course on Lie Algebras	635
	D.1	Basic Properties and so(3)	635
	D.2	Group Representations and Lie Algebra Representations	639
	D.3	Angular Momentum	641
	D.4	su(2) = so(3)!	642

xiv Contents

D.5	From Lie Algebra Homomorphisms to Lie Group	
	Homomorphisms	644
D.6	Irreducible Representations of $SU(2)$	646
D .7	Decomposition of Unitary Representations of $SU(2)$ into	
	Irreducibles	650
D.8	Spherical Harmonics	652
D.9	$so(1,3) = sl_{\mathbb{C}}(2)!$	654
D.10	Irreducible Representations of $SL(2,\mathbb{C})$	656
D.11	QFT Is Not for the Meek	658
D.12	Some Tensor Representations of $SO^{\uparrow}(1,3)$	660
Appendix I	E Special Relativity	664
E.1	Energy-Momentum	664
E.2	Electromagnetism	666
Appendix I	F Does a Position Operator Exist?	668
Annendix (G More on the Representations of the Poincaré Group	671
G,1	A Fun Formula	671
G.2	Higher Spin: Bargmann-Wigner and Rarita-Schwinger	672
Appendix F	H Hamiltonian Formalism for Classical Fields	677
Н.1	Hamiltonian for the Massive Vector Field	677
H.2	From Hamiltonians to Lagrangians	678
H.3	Functional Derivatives	679
H.4	Two Examples	681
H.5	Poisson Brackets	682
Annandiy I	Quantization of the Electromagnetic Field through the	
	-Bleuler Approach	685
_	••	
Appendix J	Lippmann–Schwinger Equations and Scattering States	692
Appendix I	K Functions on Surfaces and Distributions	697
Appendix I	What Is a Tempered Distribution Really?	698
	Test Functions	698
L.2	Tempered Distributions	699
L.3	Adding and Removing Variables	701
L.4	Fourier Transforms of Distributions	703
Appendix N	M Wightman Axioms and Haag's Theorem	704
M.1	The Wightman Axioms	704
M.2	Statement of Haag's Theorem	710

Contents	
M.3 Easy Steps	711
M.4 Wightman Functions	714
Appendix N Feynman Propagator and Klein-Gordon Equation	721
N.1 Contour Integrals	721
N.2 Fundamental Solutions of Differential Equations	723
Appendix O Yukawa Potential	726
Appendix P Principal Values and Delta Functions	729
Solutions to Selected Exercises	731
Reading Suggestions	732
References	733
Index	738