INTENSIFIERS IN LATE MODERN ENGLISH

A Sociopragmatic Approach to Courtroom Discourse

CLAUDIA CLARIDGE

University of Augsburg

EWA JONSSON

Mid Sweden University

MERJA KYTÖ

Uppsala University

Contents

Lis	t of Figures	<i>page</i> xii
Lis	t of Tables	xvii
Ac.	knowledgements	xxi
Lis	st of Abbreviations and Notations	xxiii
I	Introduction: Pleading the Case	I
2	Theoretical and Methodological Considerations	9
	2.1 The Corpus Linguistic Approach: The Old Bailey Corpus	9
	2.2 Historical Pragmatics: The Courtroom Setting	18
	2.3 Language Variation and Change	27
	2.4 Grammaticalization and Pragmatic-Semantic Change	29
	2.5 Concluding Remarks	34
3	Intensifiers: Forms, Features, and Functions	35
	3.1 The Realm of Intensifiers: Intensification, Degree, and the Like	35
	3.2 The Classification of Intensifiers	39
	3.3 Forms and Meanings	49
	3.4 Syntactic and Lexical Patterns	53
	3.5 Pragmatic Contexts and Functions	60
	3.6 Chapter Summary: Intensifiers of This Study	63
4	Corpus Methodology and Overview of Data	64
	4.1 Material: The Old Bailey Corpus	64
	4.2 Principles and Process of Data Collection	67
	4.3 Overview of Data	73
	4.4 Chapter Summary	89
5	Maximizers	90
	5.1 Introduction	90
	5.2 An Inventory of Forms	92
	5.3 The Semantic Inventory of Maximizers	102

x Contents

	5.4 Targets of Intensification and Collocational Features	106
	5.5 Chapter Summary	118
6	Boosters	120
	6.1 Introduction	120
	6.2 An Inventory of Forms	121
	6.3 The Semantic Inventory of Boosters	137
	6.4 Targets of Intensification and Collocational Features	143
	6.5 Chapter Summary	162
7	Downtoners	163
	7.1 Introduction	163
	7.2 An Inventory of Forms	168
	7.3 The Semantic Inventory of Downtoners	174
	7.4 Targets of Intensification and Collocational Features	180
	7.5 Chapter Summary	193
8	Multivariate Analysis: Intensifiers in a Bird's-Eye View	195
	8.1 Introduction	195
	8.2 Results: An Overall View and Category-Specific Use	198
	8.3 Concluding Remarks	210
9	Intensifiers across Time	212
	9.1 Introduction	212
	9.2 Time	213
	9.3 Concluding Remarks	228
ю	The Pragmatics of Intensifiers	230
	10.1 Introduction	230
	10.2 Characteristics of Late Modern Trials as an Activity Type	230
	10.3 Functional Speaker Roles	234
	10.4 A Case Study of Two Legal Speeches	256
	10.5 Concluding Remarks	261
II	The Sociolinguistics of Intensifiers	263
	II.I Introduction	263
	11.2 Previous Research on Gender and Class	264
	11.3 Gender and Social Class in the Late Modern Period	266
	11.4 Intensifiers and Gender in the Old Bailey Corpus	272
	II.5 Intensifiers and Social Class in the Old Bailey Corpus	281
	11.6 Concluding Remarks	287

Contents	xi
12 Conclusion: Summing Up the Evidence	288
Appendix A	298
Appendix B	302
Appendix C	305
Appendix D	306
Appendix E	307
Bibliography	308
Index	228

Figures

I,I	Popular intensifiers across time (from Tagliamonte	page 2
	and Roberts 2005: 282, based on Mustanoja 1960)	-
3 . I	Scalar (Quirk et al. 1985) versus boundedness (Paradis 2008)	42
	models	
4.I	Facsimile from Old Bailey Online	66
4.2a	Example of proceeding from the searchable edition of <i>Old</i>	67
	Bailey Online	
4.2b	Excerpt of XML-annotated Old Bailey Corpus file, with	68
	utterance marked off within <u></u> tags	
4.2c	Screenshot of part of concordance in the OBC2Conc tool	69
	(Nissel 2016)	
4.3	Diachronic distribution of the full inventory of intensifiers	76
	across the period studied (1720–1913) per 100,000 words	
4.4	Diachronic distribution of the intensifier categories across	77
	the period studied (1720–1913), frequencies normalized per	
	100,000 words	
4.5	Distribution of the ten most frequent intensifiers per	78
	100,000 words. Raw frequencies and the proportion	
	of a type among all intensifiers are listed in the right margin	
4.6	Distribution of top six intensifiers in the Old Bailey Corpus,	79
	by subperiod (frequencies normalized per 100,000 words)	
4.7	Zero-form proportions of wide(ly), great(ly), other boosters	80
	with zero form, maximizer zero forms, and downtoner zero	
	forms, among all occurrences of each item or category	
4.8	Gender and role of the 129,176 speakers annotated for gender	82
	and role	
4.9	Gender and class of the 79,653 speakers annotated for gender	82
	and class	

	List of Figures	xii
4.10a	Boosters and maximizers by gender across subperiods, and the average of all speakers annotated for gender (frequency-labelled, broken line); frequencies per 100,000	86
4.10b	words Downtoners by gender across subperiods, and the average of all speakers annotated for gender (frequency-labelled, broken line); frequencies per 100,000 words	86
4.11a	Boosters and maximizers per social class across subperiods, and the average of all speakers annotated for social class (frequency-labelled, broken line); frequencies per 100,000 words	87
4.11b	Downtoners per social class across subperiods, and the average of all speakers annotated for social class (frequency-labelled, broken line); frequencies per 100,000 words	87
5.1	Distribution of the maximizers per 100,000 words, shown as bars. Raw frequencies and the proportion of a type among all maximizers are listed in the right margin	94
5.2	Distribution of the seven most frequent maximizers across the period studied (1720–1913) in normalized frequencies per 100,000 words	95
5.3	Diachronic distribution of the seven most frequent maximizers in our Old Bailey Corpus data that are also found in Hessner and Gawlitzek's (2017) study of BNC2014S (normalized frequencies)	98
5.4	The top seven Old Bailey Corpus maximizers and their occurrence in the British National Corpus trials	99
5.5	Proportion of zero form for dual-form maximizers	102
5.6	Semantic input domains of maximizers	104
	Maximizers by target of modification; proportional distribution of target categories	107
5.8	Syntactic distribution of 200 adjectives modified by the top five maximizers	109
5.9	Semantic classes of maximized adjectives (based on Dixon 1977, 2004); proportional distribution	III
5.10	Semantic process types of maximized verbs/verb phrases (based on Halliday and Matthiessen 2004); proportional distribution	113

6.1a	Distribution of the boosters per 100,000 words. Raw	123
	frequencies and the proportion of a type among all boosters	
	are listed in the right margin	
6.1b	Distribution of the infrequent boosters per 100,000 words.	124
	Raw frequencies and the proportion of a type among all	•
	boosters are listed in the right margin	
6.2	The top five Old Bailey Corpus boosters and their	129
	occurrence in the British National Corpus trials	
6.3	Proportion of zero form for dual-form boosters	133
	Semantic input domains of boosters	138
	Boosters by target of modification (proportions). This	144
	includes approximate proportions for <i>very</i> and <i>so</i> ,	- 1-1
	extrapolated from classified samples of 10 per cent each	
6.6	Syntactic distribution of adjectives modified by the top five	148
	boosters (for each booster except <i>greatly</i> pertaining	, -
	to a random sample of 200 adjectives)	
6.7	Semantic classes of boosted adjectives (based on Dixon 1977,	149
,	2004); proportional distribution. This includes	17
	approximative proportions for <i>very</i> and <i>so</i> , extrapolated from	
	classified samples of 10 per cent each	
6.8	Semantic process types of boosted verbs/verb phrases (based	152
	on Halliday and Matthiessen 2004); proportional	·
	distribution	
7.1	Intensifiers per 100,000 words in the Old Bailey Corpus, by	169
	category	
7.2	Distribution of the downtoners per 100,000 words, shown	170
	as bars. Raw frequencies and the proportion of a type among	
	all downtoners are listed in the right margin	
7.3	Distribution of the five most frequent downtoners across	170
	the period studied (1720–1913) in normalized frequencies per	
	100,000 words	
7.4	Diachronic distribution of the four downtoners in our Old	172
	Bailey Corpus data that are also found in Hessner	
	and Gawlitzek's (2017) study of BNC2014S (normalized	
	frequencies)	
7.5	The top five Old Bailey Corpus downtoners and their	173
	occurrence in the British National Corpus trials	
	Downtoners by semantic category (normalized frequencies)	176
7.7	Semantic input domains of downtoners	177

1913 (per 100,000 words)

in the courtroom

in the courtroom

10.1 Model-based estimated rates of intensifiers of different

II.I Model-based estimated rates of intensifiers of different

categories (per 100,000 words) by speakers of different roles

categories (per 100,000 words) by speakers of different roles

235

273

11.2	Model-based estimated rates of intensifiers of different	282
	categories (per 100,000 words) by speakers of different social	
	classes	
Cı	Very: diachronic and sociopragmatic patterns in its estimated	305
	usage rate	
C_2	Boosters without very: diachronic and sociopragmatic	305
	patterns in their estimated usage rate	
C_3	Intensifiers without very: diachronic and sociopragmatic	305
	patterns in their estimated usage rate	
$D_{\mathbf{I}}$	A little: diachronic and sociopragmatic patterns in its	306
	estimated usage rate	
D_2	Downtoners without <i>a little</i> : diachronic and sociopragmatic	306
	patterns in their estimated usage rate	
Eı	Diminishers: diachronic and sociopragmatic patterns	307
	in their estimated usage rate	
E2	Minimizers: diachronic and sociopragmatic patterns in their	307
	estimated usage rate	

Tables

I.I	Intensifier ranks in different studies (from Wagner 2017: 65)	page 3
3.I		40
4.1a–c	and the second s	74
1	downtoners from the Old Bailey Corpus included	, ,
	in the investigation; raw frequencies and frequencies	
	normalized per 100,000 words	
4.2	Word counts of the Old Bailey Corpus	84
5.1		97
	maximizer in our Old Bailey Corpus data, and their	
	frequency in BNC2014S as documented by Hessner	
	and Gawlitzek (2017); frequencies per 100,000 words	
5.2	Maximizers attested in the British National Corpus trials	99
	(normalized frequencies per 100,000 words)	
5.3	Suffixed versus suffixless maximizer forms (raw	102
	frequencies)	
5.4	, , , , , , , , , , , , , , , , , , , ,	105
5.5	•	106
	domain (normalized frequencies)	
5.6	•	108
	frequencies)	
5.7	•	110
_	the top five maximizers (raw frequencies and percentages)	
5.8	<i>,</i>	II2
	1977, 2004)	
5.9	0	114
	forms of maximizers	
5.10	Adjectives modified by zero-form maximizers (raw	115
	frequencies), examples	_
5.II	Most frequent target lexemes of the top seven maximizers	116

6.1	Boosters searched for in the Old Bailey Corpus	122
6.2		127
	booster in our Old Bailey Corpus data, and their	
	frequency in BNC2014S as documented by Hessner	
	and Gawlitzek (2017); frequencies per 100,000 words	
6.3		128
6.4		136
6.5	Boosters by semantic input domain (raw frequencies)	141
6.6	Distribution of boosters by semantic input	142
	domain (normalized frequencies)	
6.7	Targets modified by individual boosters (frequencies	146
	of very and so extrapolated from 10 per cent samples)	
6.8	Syntactic distribution of adjectives modified by the top	148
	five boosters (for each booster except greatly pertaining	
	to a random sample of 200 adjectives; raw frequencies	
	and percentages)	
6.9a	Semantic classification of adjectives boosted by very (cf.	150
	Dixon 1977, 2004); raw frequencies pertaining	
	to 10 per cent sample	
6.9b	Semantic classification of adjectives boosted by so (cf.	150
	Dixon 1977, 2004); raw frequencies pertaining	
	to 10 per cent sample	
6.9c	Semantic classification of adjectives boosted by boosters	151
	other than <i>very</i> or <i>so</i> (cf. Dixon 1977, 2004)	
6.10	Targets of modification and suffixed versus suffixless	153
	forms of boosters	
6.11	Adjectives modified by zero-form boosters (raw	153
	frequencies), examples	
6.12	Most frequent target lexemes of the top seven boosters;	157
	raw frequencies (frequencies for very and so	
	pertain to 10 per cent samples)	
6.13	Intensification of boosters	160
7.I	Downtoners searched for in the Old Bailey Corpus	168
7.2	The twelve most common downtoners in our Old Bailey	171
	Corpus data and the frequency in BNC2014S of those	
	documented by Hessner and Gawlitzek (2017);	
	frequencies per 100,000 words	
7.3	Downtoners attested in the British National Corpus trials	172
	(normalized frequencies per 100,000 words)	

	List of Tables	xix
7.4	Suffixed versus suffixless downtoner forms (raw frequencies and percentages of the suffixless forms)	174
7.5	Downtoner subcategories (raw frequencies)	175
7.6	Downtoners by semantic category (normalized	176
,	frequencies per 100,000 words)	,
7.7	Downtoners by semantic input domain (raw frequencies)	178
7.8	Distribution of downtoners by semantic input	178
•	domain (normalized frequencies)	,
7.9	Targets modified by individual downtoners (raw	181
	frequencies)	
7.10	Syntactic distribution of adjectives modified by the top	185
	five downtoners	•
7.11	Semantic classification of downtoned adjectives (cf.	187
	Dixon 1977, 2004)	
7.12	Targets of modification and suffixed versus suffixless	188
	forms of downtoners	
7.13	Adjectives modified by zero-form downtoners (raw	189
	frequencies)	
7.14	Most frequent target lexemes of the top seven downtoners	190
7.15	Most frequent target lexemes of downtoners, by	192
	downtoner category	
8.1	Rate ratios (highest vs. lowest estimated rates) of the four	201
	predictors for intensifiers overall and for the three	
	intensifier categories	
9.1	Scribes in the Old Bailey Corpus and their average	219
	normalized frequency of intensifiers	
9.2	Interaction effects of time on the sociopragmatic variables	225
	(role, gender, and class)	
11.1	Occupational groups in the two-class system (cf. van	272
	Leeuwen and Maas 2011: 57)	
11.2	Intensifiers used exclusively by female and male speakers,	277
	respectively, per subperiod (no rank order)	
11.3	Top six boosters per subperiod in rank order by gender,	279
	with frequencies per 100,000 words (raw frequencies	
	in parentheses)	
11.4	Top six maximizers per subperiod in rank order by	280
	gender, with frequencies per 100,000 words (raw	
	frequencies in parentheses)	
11.5	Intensifiers used exclusively by higher and lower-class	286
	speakers, respectively, per subperiod (no rank order)	

ХX

Bı	Estimated rates per 100,000 words and 95 per cent CI	302
	ranges of intensifiers overall, maximizers, boosters,	
	and downtoners	
B2	Estimated rates per 100,000 words and 95 per cent CI	303
	ranges of intensifier subcategories	
B3	Estimated rates per 100,000 words and 95 per cent CI	304
	ranges of downtoner subcategories	