the biology of CANCER THIRD EDITION

Robert A. Weinberg, Massachusetts Institute of Technology

With chapters by: Richard Goldsby, Amherst College Michael Hemann, Massachusetts Institute of Technology Tyler Jacks, Massachusetts Institute of Technology

Detailed Contents

Chapter 1: The Biology and Genetics of Cells and Organisms

Organ	lisms	1
1.1	Mendel establishes the basic rules of genetics	2
1.2	Mendelian genetics helps to explain Darwinian evolution	4
1.3	Mendelian genetics governs how both genes and	
	chromosomes behave	6
1.4	Chromosomes are altered in most types of cancer cells	9
1.5	Mutations causing cancer occur in both the germ	
	line and the soma	9
1.6	Genotype embodied in DNA sequences creates	
	phenotype through proteins	12
1.7	Gene expression patterns also control phenotype	17
1.8	Modification of chromatin proteins and DNA	20
1.0	controls gene expression	20
1.9	Unconventional KINA molecules also affect	24
1 10	the expression of genes	24
1.10	over vest evolutionery time periods	26
1 1 1	Gene cloning techniques revolutionized the study	20
1.11	of normal and malignant cells	27
Addit	ional reading	29
10010		-
Chap	ter 2: The Nature of Cancer	31
21	Tour and a form a small timeson	22
2.1	Tumors arise from many englished call types	34
2.2	throughout the body	34
23	Some types of types do not fit into the major	54
4.3	classifications	42
24	Cancers seem to develop progressively	44
$\frac{2.7}{2.5}$	Tumors are monoclonal growths	49
2.5	Cancers occur with vastly different frequencies	
2.0	in different human populations	51
2.7	The risks of cancers often seem to be increased	• -
	by assignable influences, including lifestyle	54
2.8	Specific chemical agents can induce cancer	56
2.9	Both physical and chemical carcinogens act as	
	mutagens	57
2.10	Mutagens may be responsible for some human	
	cancers	60
2.11	Synopsis and prospects	61
Key c	oncepts	63
Thou	ght questions	64
Addi	tional reading	65
CI	tor 2. Comon on an Infrations Discore	17
Chap	oter 3: Cancer as an infectious Disease	07
3.1	Peyton Rous discovers a chicken sarcoma virus	68
3.2	Rous sarcoma virus is discovered to transform	
	infected cells in culture	69
3.3	The continued presence of RSV is needed to	
	maintain transformation	72
3.4	Viruses containing DNA molecules are also	
	able to induce cancer	74
3.5	Tumor viruses induce multiple changes in cell	
	phenotype including acquisition of tumorigenicity	77

3.6	Tumor virus genomes persist in virus-transformed	
	cells by becoming part of host-cell DNA	79
3.7	Retroviral genomes become integrated into the	
	chromosomes of infected cells	82
3.8	A version of the <i>src</i> gene carried by RSV is also	
	present in uninfected cells	84
3.9	RSV exploits a kidnapped cellular gene to	
	transform cells	86
3.10	The vertebrate genome carries a large group of	
	proto-oncogenes	88
3.11	Slowly transforming retroviruses activate	
	proto-oncogenes by inserting their genomes	
	adjacent to these cellular genes	89
3.12	Some retroviruses naturally carry oncogenes	92
3.13	Bacterial cancers	94
3.14	Synopsis and prospects	95
Key co	oncepts	97
Thous	the duestions	98
Addit	ional reading	99
	Ø	

Chap	oter 4: Cellular Oncogenes	101
4.1	Transfection of DNA provides a strategy for	
4.2	detecting nonviral oncogenes	102
4.2	Oncogenes discovered in human tumor cell lines	
	are related to those carried by transforming	104
4.7	retroviruses	104
4.3	Proto-oncogenes can be activated by genetic	
	changes affecting either protein expression level	107
4.4	Or structure	107
4.4	variations on a theme: the <i>myc</i> oncogene can	
	machanisma	111
15	A diverse error of structurel changes in proteins	111
4.5	an also lead to operational changes in proteins	117
16	Sumposis and prospects	117
Key c	by hopsis and prospects	120
Thou	abt questions	122
Addi	tional reading	123
Cha	nter 5: Growth Factors Recentors and Cancer	125
Cha	oter 5. Growin Factors, Receptors, and Cancer	125
5.1	Normal metazoan cells control each other's lives	126
5.2	The Src protein functions as a tyrosine kinase	129
5.3	The EGF receptor functions as a tyrosine kinase	132
5.4	An altered growth factor receptor can function	
	as an oncoprotein	135
5.5	A growth factor gene can become an oncogene:	
	the case of sis	138
5.6		
	Transphosphorylation underlies the operations	
	Transphosphorylation underlies the operations of many receptor tyrosine kinases	141
5.7	Transphosphorylation underlies the operations of many receptor tyrosine kinases Yet other types of receptors enable mammalian	141
5.7	Transphosphorylation underlies the operations of many receptor tyrosine kinases Yet other types of receptors enable mammalian cells to communicate with their environment	141 147
5.7 5.8	Transphosphorylation underlies the operations of many receptor tyrosine kinases Yet other types of receptors enable mammalian cells to communicate with their environment Nuclear receptors sense the presence of low-	141 147
5.7 5.8	Transphosphorylation underlies the operations of many receptor tyrosine kinases Yet other types of receptors enable mammalian cells to communicate with their environment Nuclear receptors sense the presence of low- molecular-weight lipophilic ligands	141 147 153
5.7 5.8 5.9	Transphosphorylation underlies the operations of many receptor tyrosine kinases Yet other types of receptors enable mammalian cells to communicate with their environment Nuclear receptors sense the presence of low- molecular-weight lipophilic ligands Integrin receptors sense association between the	141 147 153

xviii Detailed contents

5.10	The Ras protein, an apparent component of the downstream signaling cascade, functions	150
5 11	as a G-protein Synopsis and prospects	162
Key co	oncepts	167
Thoug	ht questions	169
Additi	onal reading	169
Chapt	ter 6: Cytoplasmic Signaling Circuitry	
Progra	ams Many of the Traits of Cancer	171
6.1	A signaling pathway reaches from the cell surface into the nucleus	172
6.2	The Ras protein stands in the middle of a complex signaling cascade	176
6.3	Tyrosine phosphorylation controls the location and thereby the actions of many cytoplasmic	170
6.4	signaling proteins SH2 and SH3 groups explain how growth	177
	signaling specificity	182
6.5	Ras-regulated signaling pathways: A cascade of kinases forms one of three important signaling	
6.6	pathways downstream of Ras Ras-regulated signaling pathways: a second	184
0.0	downstream pathway controls inositol lipids	100
6.7	and the Akt/PKB kinase Ras-regulated signaling pathways: a third	189
	downstream pathway acts through Ral, a distant	198
6.8	The JAK-STAT pathway allows signals to be	170
	transmitted from the plasma membrane directly to the nucleus	200
6.9	Cell adhesion receptors emit signals that converge with those released by growth factor recentors	202
6.10	The canonical and non-canonical Wnt pathways	204
6.11	G-protein-coupled receptors can also drive	204
6.12	normal and neoplastic proliferation Four additional "dual-address" signaling	208
0.12	pathways contribute in various ways to normal	211
6.13	The Hippo signaling circuit integrates diverse	211
6 14	inputs to govern diverse cell phenotypes Well-designed signaling circuits require both	217
0.11	negative and positive feedback controls	218
6.15	Synopsis and prospects	221
Key co	bncepts	229
Additi	onal reading	230
Chap	ter 7: Tumor Suppressor Genes	233
7.1	Cell fusion experiments indicate that the cancer	200
7 1	phenotype is recessive	234
7.2	requires a genetic explanation	235
7.3	The retinoblastoma tumor provides a solution to the genetic puzzle of TSGs	236
7.4	Incipient cancer cells eliminate wild-type copies of TSGs by a variety of mechanisms	240
7.5	The Rb gene often undergoes loss of heterozygosity	242
7.6	Loss-of-heterozygosity events can be used to	212
7.7	Promoter methylation represents an important	244
	mechanism for inactivating TSGs	247

7.8	TSGs and their encoded proteins function in	
	diverse ways	253
7.9	The NF1 protein acts as a negative regulator	
	of Ras signaling	254
7.10	APC facilitates egress of cells from colonic crypts	259
.11	KEAP1 regulates cellular response to oxidative	
	stress	265
7.12	Not all familial cancers can be explained by	
	inheritance of mutant TSGs	268
.13	Synopsis and prospects	268
Ley o	concepts	272
Thou	ght questions	273
Addi	tional reading	273
Chap	oter 8: pRb and Control of the Cell Cycle Clock	275
3.1	Cell growth and division is coordinated by a	
	complex array of regulators	276
.2	Cells make decisions about growth and	
	quiescence during a specific period in the G ₁ phase	280
.3	Cyclins and cyclin-dependent kinases constitute	
	the core components of the cell cycle clock	282
4	Cyclin–CDK complexes are also regulated by	
	CDK inhibitors	287
.5	Viral oncoproteins reveal how pRb blocks	
	advance through the cell cycle	292
.6	pRb is deployed by the cell cycle clock to serve	
	as a guardian of the restriction-point gate	295
.7	E2F transcription factors enable pRb to implement	
	growth-versus-quiescence decisions	297
8	A variety of mitogenic signaling pathways control	
	the phosphorylation state of pRb	301
.9	The Myc protein governs decisions to proliferate or	
	differentiate	302
10	TGF- β prevents phosphorylation of pRb and	
	thereby blocks cell cycle progression	307
11	pRb function and the controls of differentiation	
	are closely linked	309
.12	Control of pRb function is perturbed in most	
	if not all human cancers	311
13	Synopsis and prospects	315
ey co	oncepts	318
houg	ht questions	320
Addit	ional reading	320
Chap	ter 9: p53: Master Guardian and Executioner	323
1	DNA tumor viruses lead to the discovery of n52	324
יי. כ	453 is discovered to be a types suppressor gene	324
.2 3	Inherited mutations affecting \$53 predictores	544
	individuals to a variety of tymore	327
Δ	Mutant versions of p53 interfere with normal	321
+	p53 function	277
5	p55 ruleuon p53 protein molecules usually have short lifetimes	220
, ,	Various signals cause p52 induction	220
7	DNA damage and deregulated growth signals	552
. /	cause p53 stabilization	222
8	Mdm ² destroys its own arostor	225
0 0	APE and p52 modiated apartonic protect accient	335
/	cancer by monitoring intracellular signaling	210
10	notions as a transprintion factor that halts	340
10	publications as a transcription factor that halfs	
	and attempts to gid in the renair process	211
11	Prolonged DNA damage and opposite stimution	341
, 1 1	an induce p53 dependent concerned activation	215
12	The apoptosis program participates is normal size	545
.14	inc apoptosis program participates in normal tissue	
	development and maintenance	210
	development and maintenance	348

9.13	Apoptosis is a complex biochemical program	349
9 1 4	Both intrinsic and extrinsic apoptotic programs	347
··· ·	can lead to cell death	359
9.15	Cancer cells deploy numerous ways to inactivate	
	their apoptotic machinery	363
9.16	p53 inactivation provides an advantage to	
	incipient cancer cells at a number of steps in	244
0.17	Additional forme of call doct many limit the	300
9.17	survival of cancer cells	367
9 1 8	Synopsis and prospects	370
Kev cor	acepts	372
Though	at questions	373
Additio	onal reading	373
	-	
Chapte	er 10: Eternal Life: Cell Immortalization	
and Ti	umorigenesis	375
and re	intoligenesis	275
10.1	Normal cell populations appear to register the	
	number of cell generations separating them from	07(
10.0	their ancestors in the early embryo	3/6
10.2	Cells need to become immortalized in order to	270
10.2	form a cell line	3/0
10.5	to form tumore	380
10.4	The proliferation of cultured cells is also limited	500
10.4	by the telomeres of their chromosomes	384
10.5	Telomeres are complex molecular structures that	
	are not easily replicated	389
10.6	Incipient cancer cells can escape crisis by expressing	
	telomerase	391
10.7	Telomerase plays a key role in the proliferation	
	of human cancer cells	396
10.8	Some immortalized cells can maintain telomeres	200
10.0	without telomerase	399
10.9	lehoratory miss and in human cells of	401
10.10	Telomerase-perative mice show both decreased and	701
10.10	increased cancer susceptibility	403
10.11	The mechanisms underlying cancer pathogenesis in	
	telomerase-negative mice may also operate during	
	the development of human tumors	406
10.12	Synopsis and prospects	409
Key co	ncepts	412
Though	nt questions	413
Additio	onal reading	413
Chapt	er 11: Multi-Step Tumorigenesis	415
11 1	Most human cancers develop over many decades	
11.1	of time	416
11.2	Histopathology provides evidence of multi-step	.10
	tumor formation	419
11.3	Cells accumulate genetic and epigenetic	
	alterations as tumor progression proceeds	424
11.4	Cancer development seems to follow the rules	
11 5	of Darwinian evolution	429
11.5	Multi-step tumor progression helps to explain	421
11.6	Intra-tumor diversification can outrup	431
11.0	Darwinian selection	432
11.7	Tumor stem cells further complicate the	.54
	Darwinian model of clonal succession and	
	tumor progression	437
11.8	Multiple lines of evidence reveal that normal cells are	
	resistant to transformation by a single mutated gene	443

11.9	Human cells are constructed to be highly resistant to immortalization and transformation	448
11.10	Mammalian evolution contributed to the complexity of human cell transformation	451
11.11	Nonmutagenic agents, including those favoring cell proliferation, make important contributions to tumorigenesis	453
11.12	Mitogenic agents, key governors of human cancer	-155
11 13	incidence, can act as human tumor promoters Chronic inflammation often serves to promote	458
11.15	tumor progression in mice and humans	460
11.14	Inflammation-dependent tumor promotion	167
11.15	Metabolism is the elusive heart of the cancer process	465
11.16	Synopsis and prospects	470
Key co	oncepts	475
Thoug	ht questions	476
Additi	onal reading	476
Chan	ter 12: Shaning and Characterizing the	
Conce	or Genome	179
Cance	Li Genome	477
12.1	Tissues are organized to minimize the progressive	400
12.2	The properties of stem cells make them good	480
14.4	candidates to be cells-of-origin of cancer	483
12.3	Apoptosis drug pumps and DNA replication quality	105
12.0	control mechanisms offer tissues a way to minimize	
	the accumulation of mutant preneoplastic cells	485
12.4	Cell genomes are under constant attack from	
	endogenous biochemical processes	491
12.5	Cell genomes are under occasional attack from	
10 (exogenous mutagens and their metabolites	494
12.6	Cells deploy a variety of defenses to protect DNA	F01
127	Papair enzymes fix DNA that has been altered	501
14.7	by mutagens	502
12.8	Inherited defects in nucleotide-excision repair.	502
12.0	base-excision repair, and mismatch repair lead	
	to specific cancer susceptibility syndromes	508
12.9	A variety of other DNA repair defects confer	
	increased cancer susceptibility	514
12.10	The karyotype of cancer cells is often changed	
10.44	through alterations in chromosome structure	520
12.11	The karyotype of cancer cells is often changed	524
1717	A durphones in generations in chromosome number	524
14.14	have fueled a revolution in cancer genomics	528
12 13	Genomic analysis reveals that human cancers	520
12.10	differ with respect to mutational burden, patterns	
	of mutations, and copy number gains and losses	529
12.14	Cancer genomes contain driver and passenger	
	gene mutations	534
12.15	Cancer genomic studies reveal both inter-tumoral	
	and intra-tumoral heterogeneity	535
12.16	Synopsis and prospects	539

12.16 Synopsis and prospects	539
Key concepts	546
Thought questions	547
Additional reading	547

Chap Intera	ter 13: Dialogue Replaces Monologue: Heterotypic actions and the Biology of Angiogenesis	549
13.1	Normal and neoplastic epithelial tissues are formed from interdependent cell types	551
13.2	The extracellular matrix represents a critical	<i></i>

component of the tumor microenvironment

561

Detailed contents xx

13.3	Tumors resemble wounded tissues that do not heal	563
13.4	Experiments directly demonstrate that stromal	
10 5	cells are active contributors to tumorigenesis	575
13.5	Macrophages and myeloid cells play important roles	-74
126	Endethelial colle and the proceeds that there forms	576
13.0	ensure tumors adequate access to the circulation	500
137	Tripping the angiogenic switch is essential for	362
10.7	tumor expansion	588
13.8	The angiogenic switch initiates a highly complex	500
	process	592
13.9	Anti-angiogenesis therapies have been employed	
	to treat cancer	594
13.10	Nervous tissue contributes to tumor growth	599
13.11	Synopsis and prospects	601
Key co:	ncepts	606
Though	nt questions	607
Additio	onal reading	607

Chapter 14: Moving Out: Invasion and Metastasis

14.1	The invasion-metastasis cascade begins with local	
	invasiveness	612
14.2	Epithelial-mesenchymal transitions profoundly	
	reshape the phenotypes of carcinoma cells	615
143	Epithelial–mesenchymal transitions are often	0.20
- 110	induced by contextual signals	622
144	EMTs are programmed by transcription factors	0
1	that orchestrate key steps of embryogenesis	633
14 5	Signals released by an array of stromal cell types	000
11.5	contribute to the induction of invasiveness	
	and intravasation	637
14.6	EMT-inducing transcription factors may	007
11.0	enable entrance into the stem cell state	643
147	EMT-inducing transcription factors help	0.10
1 1.7	drive malignant progression including metastatic	
	dissemination	646
148	The invasiveness of carcinoma cells depends	010
1 1.0	on clearance of obstructing ECM	651
149	Motility enables cancer cells to move into	001
1 (1)	space excavated by MMPs	656
14 10	Intravasation and the formation of circulating	
1 1.10	tumor cells: first steps in perilous journeys	657
14 11	Colonization represents the most complex and	
1	challenging step of the invasion-metastasis cascade	667
14 12	Successful metastatic colonization often involves	
1 1112	complex adaptations	677
14.13	An example of extreme metastatic specialization:	
1 11.20	metastasis to bone requires the subversion of	
	osteoplasts and osteoclasts	679
14.14	Occult micrometastases threaten the long-term	
	survival of many cancer patients	685
14.15	Synopsis and prospects	686
Kev co	ncepts	692
Thoug	ht questions	693
Additi	onal reading	694
Chan	er 15: Crowd Control: Tumor Immunology	697
P		
15.1	The immune system continuously conducts	(00
	surveillance of tissues	698

15.2	The human immune system plays a critical role	
	in warding off various types of human cancer	
15.3	The immune system functions to destroy foreign	

- invaders and abnormal cells in the body's tissues The diversity of B cell and T cell receptors arises 15.4
- from the stochastic diversification of the genes that encode them

15.5	MHC molecules play key roles in antigen	
	recognition by T cells	710
15.6	T cells that recognize MHC-I have different	
	roles from those that recognize MHC-II	714
15.7	Dendritic cell activation of naive T cells is a key	
	step in the generation of functional helper and	
	cytotoxic T cells	714
15.8	Tumor antigens are targets of the immune response	
	to cancer	717
15.9	Natural killer cells contribute to anti-cancer	
	immunity	721
15.10	Macrophages make multiple contributions	
4 - 4 4	to tumor development	722
15.11	Regulatory 1 cells are indispensable negative	
	regulators of the immune response that are	705
1510	co-opted by tumors to counteract immune attack	725
15.12	Immune checkpoints act to limit immune responses	727
15.13 V	Synopsis and prospects	730
They co	bncepts	734
Inoug Addie	nt questions	736
Addit	ional reading	/30
Chap	ter 16: Cancer Immunotherapy	737
1/ 1	Υζ · .·	
16.1	vaccination can prevent cancer caused by	720
16.0	Infectious agents	738
16.2	vaccination against numan papillomaviruses	740
16.2	The repeating the restances	740
10.3	for concorr	742
16 /	Passive immunization with antibodies can be	142
10.4	rassive infindinzation with antibodies can be	745
16 5	I umphome and breast cancer can be treated with	743
10.5	monoclonal antibodies	748
16.6	Antibody-drug conjugates deliver toxic drugs to	740
10.0	cells displaying tumor antigens	750
167	Cancer can be treated by adoptive cell transfer	754
16.8	CAR T cells have predetermined specificity and	15.
10.0	bypass MHC-dependent antigen presentation	757
16.9	Checkpoint inhibition is a distinct type of	
	immunotherapy that modifies the behavior of	
	immune cells	761
16.10	Checkpoint immunotherapies based on mouse	
	studies have been applied in the oncology clinic	767
16.11	Resistance to immune checkpoint inhibitors	
	commonly arises	768
16.12	Lethal encounters between T cells and cancer	
	cells can be encouraged by constructing	
	bi-specific antibodies	769
16.13	T-cell-dependent immunotherapies can be	
	hampered by T-cell exhaustion	771
16.14	Synopsis and Prospects	773
Key Co	oncepts	777
Though	nt questions	778
Additio	onal reading	778
Chapt	er 17: The Rational Treatment of Cancer	781
~ mapt		
17.1	The development and clinical use of effective	
	therapies will depend on accurate diagnosis of disease	784
17.2	Surgery, radiotherapy, and chemotherapy are	
	the major pillars on which current cancer	
17.0	therapies rest	792
17.3	ine present and future use of chemotherapy	

609

700

704

708

anti-cancer drugs work 796 Differentiation, synthetic lethality, and cell cycle 17.4 checkpoints can be exploited to kill cancer cells 801

requires improved understanding of how

Detailed contents xxi

17.5	Functional and biochemical considerations dictate	
	that only a subset of the defective proteins in cancer	
	cells are attractive targets for drug development	803
17.6	Pharmaceutical chemists can generate and	
	explore the biochemical properties of a wide	
	array of potential drugs	811
17.7	Drug candidates and their targets must be examined	
	in cell models as an initial measurement of their	
	utility in whole organisms	815
17.8	Studies of a drug's action in laboratory animals are	
	an essential part of pre-clinical testing	819
17.9	Promising candidate drugs are subjected to	
	rigorous clinical tests in Phase I trials in humans	821
17.10	Phase II and III trials provide credible	
	indications of clinical efficacy	824
17.11	Tumors often develop resistance to initially	
	effective therapy	826
17.12	Targeting Bcl-2 to induce cell death	827
17.13	Gleevec paved the way for the development of	
	many other highly targeted compounds	830
	• • • •	

	17.14	EGF receptor antagonists may be useful for		
		treating a wide variety of tumor types	841	
	17.15	Proteasome inhibitors yield unexpected		
		therapeutic benefit	847	
	17.16	B-Raf discoveries have led to inroads into the		
		melanoma problem	852	
	17.17	Synopsis and prospects: challenges and		
		opportunities on the road ahead	855	
	Key co	ncepts	863	
	Thoug	Thought questions		
	Additi	864		
Abbreviations			A:1	
Classer			C.1	
	GIOSS	ary	G:1	
Index			I:1	