Inhaltsverzeichnis

Vorwort ---- V

1	Emulsionen – Herstellung, Stabilität, Anwendung in der Industrie — 1
1.1	Allgemeine Einführung —— 1
1.2	Art des Emulgators —— 1
1.3	Aufbau des Systems —— 2
1.4	Zerfallsprozesse in Emulsionen —— 3
1.5	Aufrahmung und Sedimentation —— 4
1.6	Ausflockung —— 4
1.7	Ostwald-Reifung (Disproportionierung) —— 5
1.8	Koaleszenz — 5
1.9	Phasenumkehrung —— 5
1.10	Industrielle Anwendungen von Emulsionen —— 6
1.11	Gliederung des Buchs —— 6
	Literatur —— 9
2	Thermodynamik der Emulsionsbildung und -zersetzung —— 10
2.1	Die Schnittstelle (Gibbs'sche Trennlinie) —— 10
2.2	Thermodynamik der Emulsionsbildung und -zersetzung —— 12
	Literatur —— 15
3	Wechselwirkungskräfte zwischen Emulsionströpfchen —— 16
3.1	Van-der-Waals-Anziehung —— 16
3.2	Elektrostatische Abstoßung —— 19
3.3	Sterische Abstoßung —— 23
3.3.1	Mischungswechselwirkung G _{mix} —— 24
3.3.2	Elastische Interaktion G _{el} —— 26
3.3.3	Gesamtenergie der Interaktion —— 27
3.3.4	Kriterien für eine wirksame sterische Stabilisierung —— 28
	Literatur —— 29
4	Adsorption von Tensiden an der Öl/Wasser-Grenzfläche —— 30
4.1	Einleitung —— 30
4.2	Die Gibbs'sche Adsorptionsisotherme —— 30
4.3	Ansatz der Zustandsgleichung —— 34
4.4	Die Gleichungen von Langmuir, Szyszkowski und Frumkin —— 36
4.5	Effektivität der Adsorption von Tensiden an der Flüssig/
	flüssig-Grenzfläche —— 37
4.6	Effizienz der Adsorption von Tensiden an der Grenzfläche zwischen
	Flüssigkeit und Flüssigkeit —— 37

4.7	Adsorption von Gemischen aus zwei Tensiden —— 39
4.8	Adsorption von Makromolekülen —— 41
4.9	Messungen der Grenzflächenspannung —— 42
4.9.1	Das Wilhelmy-Platten-Verfahren —— 43
4.9.2	Die Methode des hängenden Tropfens (Pendent-Drop-Methode) —— 44
4.9.3	Methode des sitzenden Tropfens (Sessile-Drop-Methode) —— 45
4.9.4	Die Du-Noüy-Ring-Methode —— 46
4.9.5	Die Methode des Tropfenvolumens (Gewichtsmethode) —— 46
4.9.6	Die Spinning-Drop-Methode —— 47
	Literatur —— 48
5	Mechanismus der Emulgierung und die Rolle des Emulgators —— 49
5.1	Einleitung —— 49
5.2	Mechanismus der Emulgierung —— 49
5.3	Die Rolle von Tensiden bei der Emulsionsbildung — 52
5.3.1	Die Rolle der Tenside bei der Verringerung der Tröpfchengröße — 52
5.3.2	Die Rolle der Tenside bei der Tröpfchenverformung — 55
	Literatur —— 60
6	Methoden der Emulgierung —— 61
6.1	Einleitung —— 61
6.2	Rotor-Stator-Mischer —— 61
6.2.1	Gezahnte Geräte —— 62
6.2.2	Chargen-Radialmischer —— 62
6.2.3	Gestaltung und Anordnung —— 64
6.3	Abflussregime —— 65
6.3.1	Laminare Strömung —— 66
6.3.2	Turbulente Strömung —— 69
6.4	Emulgieren mit Membranen —— 73
6.5	Formulierungsvariablen und Vergleich verschiedener
	Emulgiermethoden —— 73
	Literatur —— 75
7	Auswahl der Emulgatoren —— 76
7.1	Einleitung —— 76
7.2	Das Konzept des hydrophil-lipophilen Gleichgewichts (HLB) —— 79
7.3	Das Konzept der Phaseninversionstemperatur (PIT) —— 86
7.4	Das Konzept des kohäsiven Energieverhältnisses (CER) —— 89
7.5	Der kritische Packungsparameter (CPP) für die Auswahl
	der Emulsion —— 91
7.6	Stabilisierung durch feste Partikel (Pickering-Emulsionen) —— 94 Literatur —— 98

8	Aufrahmung/Sedimentation von Emulsionen und deren Vermeidung —— 100
8.1	Einleitung —— 100
8.2	Aufrahmungs- oder Sedimentationsraten —— 101
8.2.1	Sehr verdünnte Emulsionen (φ < 0,01) — 101
8.2.2	Mäßig konzentrierte Emulsionen $(0,2 > \varphi > 0,1)$ —— 102
8.2.3	Konzentrierte Emulsionen ($\phi > 0,2$) — 103
8.3	Eigenschaften der Rahmschicht —— 104
8.4	Verhinderung von Aufrahmung oder Sedimentation —— 105
8.4.1	Anpassung der Dichte von Ölphase und wässriger Phase —— 105
8.4.2	Verringerung der Tröpfchengröße —— 105
8.4.3	Verwendung von "Verdickungsmitteln" —— 105
8.4.4	Verringerung der Aufrahmung/Sedimentation von Emulsionen durch
	Assoziativverdickungsmittel — 108
8.4.5	Kontrollierte Flockung —— 112
8.4.6	Verarmungsflockung —— 113
8.4.7	Verwendung von "inerten" Feinpartikeln —— 115
8.4.8	Verwendung von Gemischen aus Polymeren und feinteiligen
	Feststoffen —— 117
8.4.9	Verwendung von flüssigkristallinen Phasen —— 117
	Literatur —— 118
9	Flockung von Emulsionen —— 119
9.1	Einleitung —— 119
9.2	Mechanismus der Emulsionsflockung —— 120
9.2.1	Flockung von elektrostatisch stabilisierten Emulsionen —— 120
9.2.2	Flockung von sterisch stabilisierten Emulsionen —— 125
9.2.3	Schwache Ausflockung von sterisch stabilisierten Emulsionen —— 129
9.2.4	Verarmungsflockung —— 130
9.2.5	Überbrückende Flockung durch Polymere und Polyelektrolyte —— 131
9.3	Allgemeine Regeln zur Verringerung (Beseitigung) der Flockung —— 134
9.3.1	Ladungsstabilisierte Emulsionen, z.B. mit ionischen Tensiden —— 134
9.3.2	Sterisch stabilisierte Emulsionen —— 135
	Literatur —— 135
10	Ostwald-Reifung in Emulsionen und ihre Verhinderung —— 136
10.1	Treibende Kraft für die Ostwald-Reifung —— 136
10.2	Kinetik der Ostwald-Reifung —— 137
10.3	Verringerung der Ostwald-Reifung —— 142
10.3.1	Zusatz eines geringen Anteils an hochunlöslichem Öl —— 142
10.3.2	Modifizierung der Grenzflächenschicht zur Verringerung der Ostwald-Reifung —— 144

10.4	Einfluss der anfänglichen Tröpfchengröße von Emulsionen auf die Ostwald-Reifungsrate —— 145 Literatur —— 146
11	Emulsionskoaleszenz und ihre Verhinderung —— 147
11.1	Einleitung —— 147
11.2	Kräfte über Flüssigfilme hinweg —— 147
11.2.1	Ansatz des Trennungsdrucks —— 149
11.2.2	Grenzflächenspannung von Flüssigkeitsfilmen —— 150
11.3	Filmriss —— 151
11.4	Koaleszenzrate zwischen Tröpfchen —— 152
11.5	Verringerung der Koaleszenz —— 159
11.5.1	Verwendung von gemischten Tensidfilmen —— 159 Literatur —— 167
12	Phasenumkehr und ihre Verhinderung —— 168
12.1	Einleitung —— 168
12.2	Katastrophischer Umsturz —— 168
12.3	Übergangsinversion —— 171
12.4	Die Phaseninversionstemperatur (PIT) —— 173
	Literatur 179
13	Charakterisierung von Emulsionen und Bewertung ihrer
	Stabilität —— 181
13.1	Einleitung —— 181
13.2	Bewertung der Struktur der Fest/flüssig-Grenzfläche —— 182
13.2.1	Untersuchung der Doppelschicht —— 182
13.2.2	Messung der Adsorption von Tensiden und Polymeren —— 184
13.3	Bewertung des Aufrahmens/Sedimentierens von Emulsionen —— 186
13.4	Bewertung von Flockung, Ostwald-Reifung und Koaleszenz —— 189
13.4.1	Optische Mikroskopie —— 189
13.4.2	Elektronenmikroskopie —— 191
13.4.3	Konfokale Laser-Scanning-Mikroskopie (CLSM) —— 193
13.5	Streuungstechniken —— 193
13.5.1	Lichtstreuungstechniken —— 193
13.5.2	Messungen der Trübung —— 195
13.5.3	Lichtbeugungstechniken —— 196
13.5.4	Dynamische Lichtstreuung – Photonenkorrelationsspektroskopie (PCS) —— 198
13.5.5	Rückstreuungstechniken —— 201
13.6	Messung der Aufrahmungs- oder Sedimentationsrate —— 202
13.7	Messung der Flockungsrate —— 202

Messung der beginnenden Flockung —— 203
Messung der Ostwald-Reifung —— 204
Messung der Koaleszenzrate —— 204
Volumeneigenschaften von Emulsionen —— 205
Literatur —— 205
Industrielle Anwendungen von Emulsionen —— 207
Einleitung —— 207
Lebensmittel-Emulsionen —— 207
Tenside in Lebensmittelqualität —— 208
Assoziationsstrukturen von Tensiden, Mikroemulsionen und
Emulsionen in Lebensmitteln —— 217
Emulsionen in Kosmetika und Körperpflegeformulierungen —— 220
Emulsionen in der Pharmazie —— 229
Emulsionen in Agrochemikalien —— 232
Walzöl und Schmierstoffemulsionen —— 232
Literatur —— 233

Register —— 235