GRADUATE STUDIES **250**

The Practice of Algebraic Curves

A Second Course in Algebraic Geometry

David Eisenbud Joe Harris

Contents

Preface	XV
Introduction	1
Why you want to read this book	1
Why we wrote this book	2
What's with the title?	3
What's in this book	4
 Exercises and hints 	7
 Relation of this book to other texts 	7
Prerequisites, notation and conventions	8
 Commutative algebra 	8
 Projective geometry 	8
 Sheaves and cohomology 	9
Chapter 1. Linear series and morphisms to projective space	11
1.1 Divisors	12
1.2 Divisors and rational functions	13
 Generalizations 	13
 Divisors of functions 	14
 Invertible sheaves 	15
 Invertible sheaves and line bundles 	17
1.3 Linear series and maps to projective space	18
1.4 The geometry of linear series	20
• An upper bound on $h^0(\mathcal{L})$	20
 Incomplete linear series 	21
 Sums of linear series 	23

• Which linear series define embeddings?	23
Evercises	26
Exclusion	29
Chapter 2. The Riemann–Roch theorem	29
2.1 How many sections?	30
Riemann-Roch without duality	31
2.2 The most interesting lifear series	32
Hurwitz's theorem	34
2.3 Riemann-Roch with duality	37
 Residues 	40
 Arithmetic genus and geometric genus 	41
2.4 The canonical morphism	43
Geometric Riemann–Roch	45
 Linear series on a hyperelliptic curve 	46
2.5 Clifford's theorem	47
2.6 Curves on surfaces	48
 The intersection pairing 	48
 The Riemann–Roch theorem for smooth surfaces 	49
Blowups of smooth surfaces	50
2.7 Quadrics in \mathbb{P}^3 and the curves they contain	51
The classification of quadrics Some classes of current on quadrics	51
• Some classes of curves on quadrics	51
2.8 Exercises	52
Chapter 3. Curves of genus 0	57
3.1 Rational normal curves	58
3.2 Other rational curves	63
 Smooth rational quartics 	64
 Some open problems about rational curves 	66
3.3 The Cohen–Macaulay property	68
3.4 Exercises	71
Chapter 4. Smooth plane curves and curves of genus 1	75
4.1 Riemann, Clebsch, Brill and Noether	75
4.2 Smooth plane curves	77
• 4.2.1 Differentials on a smooth plane curve	77
• 4.2.2 Linear series on a smooth plane curve	79
• 4.2.3 The Cayley–Bacharach–Macaulay theorem	80
4.3 Curves of genus 1 and the group law of an elliptic curve	e 82

4.4	Low degree divisors on curves of genus 1	84
	 The dimension of families Double courses of D 	84
	Plana cubica	85
4 5	Corrus 1 susceptions in TD ³	85
4.5	Genus 1 quartics in P ⁴	86
4.0	Genus I quintics in P*	88
4.7	Exercises	90
Chapt	er 5. Jacobians	93
5.1	Symmetric products and the universal divisor	94
	 Finite group quotients 	95
5.2	The Picard varieties	96
5.3	Jacobians	98
5.4	Abel's theorem	101
5.5	The $g + 3$ theorem	103
5.6	The schemes $W_d^r(C)$	105
5.7	Examples in low genus	105
	► Genus 1	105
	• Genus 2	106
	• Genus 3	106
5.8	Martens' theorem	106
5.9	Exercises	108
Chapt	er 6. Hyperelliptic curves and curves of genus 2 and 3	111
6.1	Hyperelliptic curves	111
	• The equation of a hyperelliptic curve	111
	 Differentials on a hyperelliptic curve 	113
6.2	Branched covers with specified branching	114
	• Branched covers of \mathbb{P}^1	115
6.3	Curves of genus 2	117
	• Maps of C to \mathbb{P}^1	117
	• Maps of C to \mathbb{P}^2	118
	• Embeddings in \mathbb{P}^3	119
	 The dimension of the family of genus 2 curves 	120
6.4	Curves of genus 3	121
	 Other representations of a curve of genus 3 	121
6.5	Theta characteristics	123
	 Counting theta characteristics (proof of Theorem 6.8) 	127
6.6	Exercises	129

Chapter 7 Fine moduli spaces	133
7.1 What is a moduli problem?	133
7.2 What is a solution to a moduli problem?	136
7.2 What is a solution to a moduli process.	137
7.5 Fillbert schemes	138
• 7.3.2 Parametrizing twisted cubics	140
• 7.3.3 Construction of the Hilbert scheme in general	141
• 7.3.4 Grassmannians	142
• 7.3.5 Equations defining the Hilbert scheme	143
7.4 Bounding the number of maps between curves	144
7.5 Exercises	146
Chapter 8. Moduli of curves	147
8.1 Curves of genus 1	147
• M_1 is a coarse moduli space	148
 The good news 	149
 Compactifying M₁ 	150
8.2 Higher genus	152
 Stable, semistable, unstable 	154
8.3 Stable curves	155
• How we deal with the fact that \overline{M}_g is not fine	157
8.4 Can one write down a general curve of genus g?	157
8.5 Hurwitz spaces	159
• The dimension of M_g	160
 Irreducibility of M_g 	161
8.6 The Severi variety	161
 Local geometry of the Severi variety 	162
8.7 Exercises	165
Chapter 9. Curves of genus 4 and 5	167
9.1 Curves of genus 4	167
 The canonical model 	167
 Maps to projective space 	168
9.2 Curves of genus 5	172
9.3 Canonical curves of genus 5	173
 First case: the intersection of the quadrics has dimension 1 	173
 Second case: the intersection of the quadrics is a surface 	176
9.4 Exercises	177
Chapter 10. Hyperplane sections	
of a curve	179

10.1 Linearly general position	179
10.2 Castelnuovo's theorem	183
 Proof of Castelnuovo's bound 	184
 Consequences and special cases 	188
10.3 Other applications of linearly general position	189
• Existence of good projections	189
• The case of equality in Martens' theorem	190
• The $g + 2$ theorem	192
10.4 Exercises	194
Chapter 11. Monodromy of hyperplane sections	197
11.1 Uniform position and monodromy	107
The monodromy group of a generically finite morphism	100
Uniform position	190
11.2 Flexes and bitangents are isolated	200
 Not every tangent line is tangent at a flex 	200
 Not every tangent is hitangent 	200
11.2 Proof of the uniform position lemma	201
 Inform position for higher-dimensional varieties 	201
11.4 Applications of uniform position	202
In Applications of dimorni position	204
 Numerical uniform position 	204
 Numerical uniform position Sume of linear sories 	204
 Sums of micros Nodes of plane surges 	205
• Nodes of plane curves	203
11.5 Exercises	206
Chapter 12. Brill–Noether theory and applications to genus 6	209
12.1 What linear series exist?	209
12.2 Brill–Noether theory	209
 12.2.1 A Brill–Noether inequality 	211
 12.2.2 Refinements of theBrill–Noether theorem 	212
12.3 Linear series on curves of genus 6	215
 12.3.1 General curves of genus 6 	216
 12.3.2 Del Pezzo surfaces 	217
 12.3.3 The canonical image of a general curve of genus 6 	219
12.4 Classification of curves of genus 6	219
 D has a basepoint 	220
• C is not trigonal and the image of ϕ_D is two-to-one onto a plane	0.00
curve of degree 3.	220
12.5 Exercises	221

Chapter 13 Inflection points	223
13.1 Inflection points Plücker formulas and Weierstrass points	223
Definitions	223
 The Plücker formula 	224
 Flexes of plane curves 	226
 Weierstrass points 	226
 Another characterization of Weierstrass points 	227
13.2 Finiteness of the automorphism group	228
13.3 Curves with automorphisms are special	230
13.4 Inflections of linear series on \mathbb{P}^1	231
 Schubert cycles 	232
 Special Schubert cycles and Pieri's formula 	234
 Conclusion 	235
13.5 Exercises	237
Chapter 14. Proof of the Brill–Noether theorem	241
14.1 Castelnuovo's approach	241
• Upper bound on the codimension of $W_d^r(C)$	243
14.2 Specializing to a g-cuspidal curve	244
 Constructing curves with cusps 	244
 Smoothing a cuspidal curve 	244
14.3 The family of Picard varieties	245
 The Picard variety of a cuspidal curve 	245
 The relative Picard variety 	246
 Limits of invertible sheaves 	247
14.4 Putting it all together	250
Nonexistence	250
Existence	250
14.5 Brill–Noether with inflection	250
14.6 Exercises	252
Chapter 15. Using a singular plane model	253
15.1 Nodal plane curves	253
 15.1.1 Differentials on a nodal plane curve 	253
• 15.1.2 Linear series on a nodal plane curve	256
15.2 Arbitrary plane curves	259
 The conductor ideal and linear series on the normalization 	260
 Differentials 	262
15.3 Exercises	265
Chapter 16. Linkage and the canonical sheaves of singular curves	269

16.1	Introduction	269
16.2	Linkage of twisted cubics	270
16.3	Linkage of smooth curves in \mathbb{P}^3	272
16.4	Linkage of purely 1-dimensional schemes in \mathbb{P}^3	273
16.5	Degree and genus of linked curves	274
•	Dualizing sheaves for singular curves	274
16.6	The construction of dualizing sheaves	275
16.7	The linkage equivalence relation	280
16.8	Comparing the canonical sheaf with that of the normalization	281
16.9	A general Riemann–Roch theorem	284
16.10	Exercises	285
•	Ropes and ribbons	286
•	General adjunction	288
Chapter	17. Scrolls and the curves they contain	289
17.1	Some classical geometry	290
17.2	1-generic matrices and the equations of scrolls	292
17.3	Scrolls as images of projective bundles	298
17.4	Curves on a 2-dimensional scroll	299
٠	Finding a scroll containing a given curve	299
•	Finding curves on a given scroll	301
17.5	Exercises	306
Chapter	18. Free resolutions and canonical curves	309
18.1	Free resolutions	309
	The classification of 1-generic $2 \times f$ matrices	311
•	How to look at a resolution	313
•	When is a finite free complex a resolution?	313
18.2	Depth and the Cohen–Macaulay property	315
	The Gorenstein property	316
18.3	The Eagon–Northcott complex	317
	The case rank $G = 1$: the Koszul complex	318
I	The case rank $F = \operatorname{rank} G + 1$: the Hilbert-Burch complex	320
I	• The Hilbert-Burch theorem	321
10.4	Green's conjecture	322
18.4	Greensconjecture	221
18.5	Exercises	221
Chapte	r 19. Hilbert Schemes	335

		335
19.1	Degree 3 The other component of $\mathcal{H}_{0,2,2}$	336
10.2	Extraneous components	337
19.2	Degree 4	338
19.3	Cenus ()	338
•	Genus 1	339
194	Degree 5	339
12.1	Genus 2	339
19.5	Degree 6	340
•	Genus 4	341
•	Genus 3	341
19.6	Degree 7	341
19.7	The expected dimension of $\mathcal{H}_{g,r,d}^{\circ}$	341
19.8	Some open problems	343
•	Brill–Noether in low codimension	343
•	Maximally special curves	344
•	Rigid curves?	345
19.9	Degree 8, genus 9	346
19.10	Degree 9, genus 10	347
19.11	Estimating the dimension of the restricted Hilbert schemes using the Brill–Noether theorem	g 348
19.12	Exercises	349
Annend	iv: A historical essay on some tonics in algebraic geometry	
nppend	by Jeremy Gray	353
A.1	Greek mathematicians and conic sections	353
A.2	The first appearance of complex numbers	355
A.3	Conic sections from the 17th to the 19th centuries	356
A.4	Curves of higher degree from the 17th to the early 19th century	359
A.5	The birth of projective space	367
A.6	Riemann's theory of algebraic curves and its reception	368
A.7	First ideas about the resolution of singular points	370
A.8	The work of Brill and Noether	372
A.9	Historical bibliography	373
Hints to	marked exercises	379
Bibliogr	aphy	391
Index		401