Cheminformatics and Bioinformatics at the Interface with Systems Biology Bridging Chemistry and Medicine

By

Aman Chandra Kaushik

Shanghai Jiao Tong University, China Email:amanbioinfo@gmail.com

Aamir Mehmood

Shanghai Jiao Tong University, China Email:aamirmehmood@sjtu.edu.cn

Dong-Qing Wei Shanghai Jiao Tong University, China Email:dqwei@sjtu.edu.cn

Sadia Nawab

Shanghai Jiao Tong University, China Email:sadianawab@sjtu.edu.cn

Shakti Sahi

Gautam Buddha University, India Email:shaktis@gbu.ac.in

and

Ajay Kumar National Sun Yat-sen University, Taiwan Email:ajaynsysu@mem.nsysu.edu.tw

Contents

Chapter 1	Systems Biology and Drug Target Identification	1
	1.1 Introduction	1
	1.2 Systems Biology and Drug Targets	1 2 3
	1.2.1 Systems-based Drug Identification	3
	1.2.2 Disease as a Network State	3
	1.2.3 Regulating Network Dynamics	3
	1.2.4 Allosteric Sites as Drug Binding Targets	4
	1.2.5 Controlling Drug Target Gene Expression	5
	1.2.6 Impact of Drug Binding Kinetics	6
	1.3 Novel Guidelines for Structure-based Drug Design	
	(SBDD) in the Systems Biology Era	7
	1.3.1 De Novo Drug Design	7
	1.3.2 Multi-target Drug Design	8
	1.3.3 Repositioning Drug Analogs	9
	1.3.4 Drug Design for Targeting Protein-Protein	
	Interactions (PPIs)	10
	References	10
Chapter 2	Modulating Drug Target Gene Expression in Cancer	16
	2.1 Introduction	16
	2.2 Database Sources of Cancer-related Genes	18
	2.2.1 Based on the Knowledge of Pathways	19
	2.3 Network-based Methods	20

Published by the Royal Society of Chemistry, www.rsc.org

Theoretical and Computational Chemistry Series No. 24

Cheminformatics and Bioinformatics at the Interface with Systems Biology: Bridging Chemistry and Medicine

By Aman Chandra Kaushik, 'Aamir Mehmood, Dong-Qing Wei, Sadia Nawab, Shakti Sahi and Ajay Kumar

[©] Aman Chandra Kaushik, Aamir Mehmood, Dong-Qing Wei, Sadia Nawab, Shakti Sahi and Ajay Kumar 2024

	2.4 Complitatorial l'atterns of Cancer inductions	22
	2.4.1 Data Integration and Methodological	0.2
	Combination	23
	2.4.2 Subtypes of Cancer and Fair cancer	24
	2.5 Dias lowards I not renowied be	24
	2.6 Drawbacks of Protein Network Interactions	25
	2.7 Validation of Experiments	25
	2.8 Conclusion	26
		26
Chapter 3	Drug Repositioning Using Genome-wide Screening and	
cp		31
	3.1 Introduction	31
	3.2 High-performance Identification of Drug Targets and	
		33
		33
		34
	chill company	
	0 0	36
		36
	3.3.4 DTI Search Via Genome-based CRISPR-Cas9	
		36
	3.4 Applications of Systems Biology in Drug	
	Repositioning	37
	3.4.1 Network-dependent Approaches for Drug	
	Relocation	37
	3.5 Role of Machine Learning in Drug Relocations	39
	3.6 Cheminformatics in Drug Relocation	40
	3.7 Computational Approaches for Drug Repositioning	41
	3.8 Repositioning Drugs Through Signature-based	
	Approaches	41
	3.9 Conclusion	42
	References	43
Chapter 4	New Directions in Systems Biology-based Target Identificati	on
	and Cancer Genome Analysis	52
	4.1 Introduction	52
	4.2 Prediction of Drug-Target Communications Using	
	Systems Biology	53
	4.3 Developments in Targeted Screening and Drug	
	Design Using Systems Biology	54
	4.4 Drug Design Via High-throughput Approaches	55
	4.5 Target Identification Through Molecular Modeling and	55
	Systems Biology	
	4.6 Developing Drug-Target Networks Using Systems	56
	Biology	
		58
	4.7 Predicting Drug-Target Interactions Through Systems Biology	
	Biology	59

Contents

	4.8 Target Confirmation <i>Via</i> Systems Biology	
	Methods	60
	4.9 Ways of Studying and Plotting Cancer Genome Information	60
	4.10 Understanding the Cancer Genome Through	62
	In Silico Approaches	62
	4.10.1 Discovery of Driver Genes in Cancer	62
	4.10.2 A Set of Mutational Genes in Cancer	63
	4.11 Understanding Cancer's Genetic Foundation	64
	4.12 Mutational Patterns Revealing the Key Driver	65
	4.13 Estimating the Impact of a Missense Mutation in	
	Cancer	67
	4.14 Understanding Cancer Gene Networks	68
	4.15 Concluding Remarks and Future Perspectives	69
	References	70
Chapter 5	Molecular Investigation of Protein–Protein Interaction	
	Candidates Related to the Mammalian Brain	81
	5.1 Introduction	81
	5.2 Parkinson's Disease	82
	5.3 Alzheimer's Disease – Another Form of Dementia	83
	5.4 PPI Data Sets for Novel Biological Insights	85
	5.5 Understanding Parkin (PARK2) 5.6 Systems Biology	86 86
	5.6.1 Biochemical Pathway Analysis	86
	5.6.2 Alzheimer's Disease from Systems Biology and	00
	Gene Networks Perspectives	87
	5.6.3 Administrative Catalogs	88
	5.6.4 Mutations and "Omics" Channels in AD	88
	5.6.5 AD's Transcriptome Channels	89
	5.6.6 Protein Communications in AD	91
	5.6.7 Protein Communication Channels and	
	Multifaceted Neurodegenerative Diseases	92
	5.6.8 Parkinson's Disease Scenario	92
	5.6.9 Using Protein Communications to Understand	
	Gene Interactomes	94
	5.6.10 Comparing PD with Other Neurodegenerative	05
	Conditions	95
	5.7 Limitations and Future Directions	96 98
	5.8 Future Perspectives and Conclusion	98
	References	50
Chapter 6	Biological Systems to Computational Systems Biology	108
	6.1 Introduction	108
	6.2 Quantitative Computational Models of Molecular	
	Self-assembly in Systems Biology	112
	6.3 Validating the Importance of Self-assembly	114

xi

	6.3.1 The Role of Self-assembly in General Cell	
	Biology	114
	6.4 Modeling and Simulation of a Self-assembly	116
	6.4.1 The Challenge of Quantitative Modeling of	
	Self-assembly Reaction Networks	116
	6.5 Modeling Approaches	117
	6.5.1 Models for the Mass Action Differential	
	Equation (DE)	118
	6.5.2 Structures Concerning Brownian Dynamics	
	(BD)	118
	6.5.3 Approaches for Hypothetical Simulation	
	Systems	119
	6.6 Self-assembly in a Wider Context	121
	6.7 Review of Machine Learning Strategies for Studying	100
	Multi-omics	122
	6.7.1 Background	122
	6.7.2 Hurdles While Studying Machine	124
	Learning-based Multi-omics	124
	6.8 Final Thoughts References	125
	References	120
Chapter 7	Controlled Vocabularies and Semantics in Systems	
r	Biology	136
	7.1 Introduction	136
	7.2 Typical Structure of SBO	139
	7.3 Simulation Workflows: KiSAO	141
	7.4 Arithmetic Outcomes: TEDDY	143
	7.5 Modeling and Simulation of Workflow	
	Ontologies	144
	7.6 Conclusion	145
	References	146
Change o		
Chapter 8	Single-molecule Imaging in Biosystems	150
	8.1 Introduction	150
	8.2 Various Methods of Cellular SMI 8.2.1 Microscopy	151
	8.2.1 Microscopy 8.2.2 Procedural Shortcomings of SMI	151
	8.3 Applications of SMI in Systems Biology	152
	8.3.1 Calculating the Molecular Ratio in Cellular	153
	Responses	150
	8.3.2 Dynamic Breakdown of Living Cells	153
	8.3.3 Coupling Numerical Modeling with SMIs	154
	8.4 Kinetics of a Solo Molecule	155
	8.5 SMI in Biosystems (Within the Nucleus)	155 156
	8.5.1 DNA	150
	8.5.2 mRNA	158
	8.5.3 Proteins	159

	8.6 Major Drawbacks	160
	8.7 Assumptions and Viewpoints	161
	8.8 Imaging the Ubiquitination of Mammalian Cells	162
	8.8.1 Methods to Study Ubiquitination	162
	8.9 Conclusion	168
	References	168
Chapter 9	Tracking the Emergence of Synthetic Biology	176
	9.1 The Early Years of Synthetic Biology	176
	9.2 Creating Standard Genetic Parts/Circuits to	
	Fabricate Natural Organisms with Novel	
	Functions	176
	9.3 Synthetically Designed Genomes	177
	9.4 Recent Developments in Synthetic Biology	178
	9.4.1 Apparatus	178
	9.4.2 Production of Biopharmaceuticals	179
	9.4.3 Immunotherapy	179
	9.4.4 A Maintainable Biochemical Commerce	179
	9.4.5 Biosensing and Bioremediation	180
	9.4.6 Financing Synthetic Biology	180
	9.5 Potential Dangers in Synthetic Biology	181
	9.5.1 Biosafety Alarms	181
	9.5.2 Biosecurity Alarms	183
	9.5.3 Moral Apprehensions	184
	9.5.4 Precautionary Procedures at the Laboratory	
	Level for Synthetic Biology-related Safety and	
	Security	185
	9.6 Synthetic Biology-related Regulatory Policy	188
	9.6.1 Scientists' Code of Conduct	188
	9.6.2 Governance at the National Level	189
	9.6.3 International Societies' Efforts	190
	9.7 Conclusions	190
	References	191
Chapter 10	Synthetic Biology: Fostering the Cyber-biological	196
	Revolution	_
	10.1 Introduction	196 197
	10.2 DNA as the New Silicon	
	10.3 Model-powered Life Cycle Development	198 200
	10.4 "The Times They Are a-Changin"	200
	10.5 The Industrial Revolution in Cyber-biology	
	10.6 Computational Pathology (CPATH)	202
	10.6.1 History and Promises of Computational	202
	Pathology	203
	10.6.2 Correlating Images with Patient Outcome	204
	10.6.3 Helping with the Diagnosis	204
	10.6.4 Finding Unusual Characteristics	205

xiii

	10.6.5 Hurdles and Solutions for Implementing	
	Computational Pathology	205
	10.6.6 Data Variability	207
	10.6.7 Public Sources	208
	10.6.8 Crowdsourcing	208
	10.6.9 Active Learning	208
	10.6.10 Quality Control and Reliability of the	
	Algorithm	209
	10.6.11 Understanding Algorithms	209
	10.7 Ethics	210
	10.8 Cyber-security	210
	10.9 Conclusion and Future Recommendations	211
	10.9.1 Sensing the Future of Bioinformational	
	Engineering	212
	References	214
	Part and a	
Chapter 11	Computational Systems Chemical Biology	222
	11.1 Overview	222
	11.2 SCB Existing Repositories, Assembly, and	
	Operations	224
	11.2.1 Complex Bioactivity Databases	226
	11.2.2 Pathway-specific Databases	228
	11.2.3 Bioavailability Databases	229
	11.2.4 Drugs, Targets, and Clinical Implications	
	Databases	230
	11.3 Modeling SCB Information to Predict Drug-Target	
	Associations: Computational Approaches	231
	11.4 Biological Network Simulations	234
	11.4.1 Pathway Simulation	234
	11.5 Integrated Cheminformatics and Network	
	Simulations	235
	11.6 Conclusion	236
	References	236
Charten 12	Outron D' la stata ta da da da da da	
Chapter 12	• • • • • • • • • • • • • • • • • • • •	
	Efficacious Drug Combinations 12.1 Introduction	239
		239
	12.2 Drug Combinations with Synergistic Effects Being Quantified	
	12.2.1 Loewe Additivity	240
	12.2.2 Bliss Independence	242
	12.3 Signaling Network Computational Models	242
	12.3.1 Mass Action- and Enzyme Kinetics-based	243
	Models	0.40
	12.3.2 Logic-based Models	243
	12.3.3 Approach to Normalized Hill Differential	244
	Equation Modeling	245
	1	245

Contents

12.3.4 Statistical Association-based Modeling	
Approach	246
12.4 Approaches for Predicting Drug Combinations Based	
on Signature 2	246
12.4.1 Prediction of Drug Combinations Using	
Network-based Approaches	247
12.4.2 Integrating Functional Genomics and	
Computational Methods for Identifying	
Drug Combinations 2	249
12.4.3 High-throughput Drug Combination	
Screens	250
12.5 Conclusion	252
References 2	252
ubject Index 2	258