Ranjith B. Mapa Editor

The Soils of Sri Lanka

Contents

1	Soil Research and Soil Mapping History	1
2	Climate	13
3	Geology and Geomorphology	23
4	Soil Mineralogy S. P. Indraratne	35
5	Major Soils of the Dry Zone and Their Classification A. R. Dassanayake, G. G. R. De Silva, and Ranjith B. Mapa	49
6	Major Soils of the Intermediate Soils and Their Classification	69
7	Major Soils of the Wet Zone and Their Classification	83
8	Land Use	95
9	Soil Degradation	103
10	Environmental Soil Issues	119
Ind	av.	125

List of Figures

Fig. 1.1	Provinces, districts and divisional secretary boundaries of Sri Lanka (Anonymous 2007)	2
Fig. 1.2	Topography of Sri Lanka (Kadupitiya et al. 2019)	-
Fig. 1.3	The first provisional soil map of Sri Lanka published by Joachim	•
- 18, 110	(1955: For the key refer to Table 1.2)	ť
Fig. 1.4	Soil map of Sri Lanka published by de Alwis and Panabokk (1972)	`
	(Scale of 1:5,000,000)	ç
Fig. 2.1	Climatic zones of Sri Lanka (NRMC, Department of Agriculture,	
E . 22	Peradeniya)	15
Fig. 2.2	Relief map of Sri Lanka (NRMC, Department of Agriculture,	1.
Ein 22	Peradeniya).	16
Fig. 2.3	Agro-climatic zones of Sri Lanka (NRMC, Department of Agriculture,	10
E:- 0.4	Peradeniya).	18
Fig. 2.4	Agro-ecological regions of Sri Lanka (NRMC, Department	10
Dia 2.1	of Agriculture, Peradeniya)	19
Fig. 3.1	Relief map of Sri Lanka	24
Fig. 3.2	Diagrammatic cross section of Sri Lanka showing three peneplains	~
E. 22	(modified after Wadia 1945) I-Lowest; II-Middle and III-Highest	25
Fig. 3.3	Cross section showing different erosional levels (in Haputale one inch	
	to one mile topographic sheet; vertical scale is 2.5 times the horizontal	25
E:- 2.4	scale) (modified after Cooray 1984)	25
Fig. 3.4 Fig. 3.5	Evolution of three peneplains in Sri Lanka, a modified after Adams	25
	(1929), b modified after Wadia (1945), c modified after	
		26
Fig. 3.6	Characteristic flat topography with isolated hills in the lowlands	
		26
Fig. 3.7	· · · · · · · · · · · · · · · · · · ·	27
Fig. 3.8	Physiographic regions of the central highland of Sri Lanka	
	·	28
Fig. 3.9	Drainage network and climatic zones of Sri Lanka (only major river	
		30
Fig. 3.10		31
Fig. 3.11	Miocene limestone beds that are overlain by Quaternary red and brown	
		32
Fig. 3.12	· · · · · · · · · · · · · · · · · · ·	33
Fig. 4.1	X-ray diffractrograms of soils a Red Yellow Podzolic soils from wet	
	zone, b Immature brown loam from intermediate zone, c Red Latosol	
	from dry zone, and d Non-Calcic Brown soils from dry zone of Sri	
	Lanka ($k = k$ -saturated: Mg = Mg-saturated: $G = Glycerol$ solvated:	

	V = vermiculite; Gi = Gibbsite; I = Illite; Ka = kaolinite;	
	M = montmorillonite. Source Indraratne, unpublished)	38
Fig. 4.2	X-ray diffractograms of the clay fraction of Red-Yellow Podzolic soils	
	collected from Sita Eliya soil (a 0–15 cm depth and b 15–30 cm depth)	
	(Ka = Kaolinite, V = Vermiculite, Gb = Gibbsite, K = K-saturated,	
	Mg = Mg-saturated, G = glycerol-solvated. Source Indraratne 2006)	41
Fig. 4.3	X-ray diffractograms of the clay fraction of Alfisols collected from	
	Mahailluppallama soil at a 0-15 cm depth and b 15-30 cm depth	
	(Ka = Kaolinite, S = Smectite, I = Illite, K = K-saturated,	
	Mg = Mg-saturated, G = glycerol-solvated. Source Indraratne 2006)	44
Fig. 4.4	X-ray diffractograms of the clay fraction (<2 μm) of Anuradhapura	
	(left) and Hambantota (right) Earth Dams. (Ka = Kaolinite,	
	S = Smectite, $I = Illite$, $K = K$ -saturated, $Mg = Mg$ -saturated,	
	G = glycerol-solvated) (Source Dias et al. 2003)	45
Fig. 4.5	Potentiometric titration curves for tropical Alfisols soil at different	
	electrolyte concentrations (Source Sanjeevani et al. 2012)	46
Fig. 5.1	The three climatic zones, wet, intermediate, and Dry zones	
Ü	of Sri Lanka (Dassanayake et al. 2007)	50
Fig. 5.2	Schematic diagram showing the flat landscape of the Dry zone	
2	(Mapa et al. 2007)	52
Fig. 5.3	Schematic diagram showing the undulating landscape of the Dry zone	
	(Mapa et al. 2007)	52
Fig. 5.4	Schematic diagram showing the relationship between topography and	
* 1 5 , 5, ,	drainage of the soils in the Dry zone a flat landscape in Northern	
	Province and b undulating landscape in North Central province (Mapa	
	et al. 2007).	53
Fig. 5.5	One sheet of the soil map of the Dry zone of Sri Lanka showing the	
1 16. 5.5	distribution of major soil series (Mapa et al. 2007; Modified	
	by V. Pushpakumara, NRMC)	56
Fig. 5.6	Landscape and soil profile of Madawachchiya soil series (Soil	
118.010	Taxonomy: Typic Rhodustalfs; FAO/WRB Legend: Cutanic Luvisols,	
	Rhodic, Skeletic, Clayic, Hypereutric) (Mapa et al. 2007)	57
Fig. 5.7	Landscape and soil profile of Cheddikulum soil series (Soil Taxonomy:	
116. 5.7	Oxyaquic Haplustalfs: FAO/WRB Legend: Cutanic Luvisols,	
	Endosodic, Skeletic, Chromic) (Mapa et al. 2007)	57
Fig. 5.8	Landscape and soil profile of Hurathgama soil series (Soil Taxonomy:	0,
1 16. 5.0	Typic Endoaqualfs; FAO/WRB legend: Luvic Gleysols, Dystric)	
	(Mapa et al. 2007)	58
Fig. 5.9	Landscape and soil profile of Negombo soil series (Soil Taxonomy:	50
116.0.5	Ustic Quartzipsamments; FAO/WRB Legend: Haplic Arenosols)	
	(Mapa et al. 2007)	60
5.10		00
7.10	Typic Quartzipsaments; FAO/WRB Legend: Haplic Arenosols,	
	Eutric, Greyic)	61
	Landscape and soil profile of Puttalam Series (Soil Taxonomy:	O1
	Sodic Endoaquents; FAO/WRB Legend: Haplic Solonchaks, Sodic)	
	(Mapa et al. 2007)	61
. 5.12		O1
. 5.12	Typic Ustipsamments; FAO/WRB Legend: Haplic Arenosols, Eutric)	
	(Mapa et al. 2007)	62
	(mapa et al. 2001)	04

ist of Figures xvii

Fig. 5.13	Landscape and soil profile of Mawillu Series (Soil Taxonomy: Oxiaquic Udorthents; FAO/WRB Legend: Haplic Arenosols, Eutric)	
Fig. 5.14	(Mapa et al. 2007)	63
	(Mapa et al. 2007)	64
Fig. 5.15	Landscape and soil profile of Manampitiya soil series (Soil Taxonomy: Oxyaquic Udifluents; FAO/WRB Legend: Haplic Fluvisols, Eutric,	
Fig. 5.16	Oxyaquic) (Mapa et al. 2007)	65
Fig. 6.1	Eutric) One sheet of the soil map of the Intermediate zone of Sri Lanka showing the distribution of major soil series (Mapa et al. 2005 Modified	66
Fig. 6.2	by V. Pushpakumara, NRMC)	70 73
Fig. 6.3	Landscape and soil profile of Kuliyapitiya series (Soil Taxonomy: Typic Hapludults; FAO/WRB legend: Cutanic Alisol)	
Fig. 6.4	(Mapa et al. 2005)	73
Fig. 6.5	Gleyic, Clayic) (Mapa et al. 2005)	74
Fig. 6.6	Dystric) Landscape and soil profile of Welipellessa soil series (Soil Taxonomy: Aquic Quartzipsaments; FAO/WRB Legend: Gleyic Fluvisols, Dystric,	75
Fig. 6.7	Arenic) (Mapa et al. 2005)	76 76
Fig. 6.8	Schematic diagram showing hill and valley landform with low to moderate relief of the Intermediate zone (Mapa et al. 2005)	70 77
Fig. 6.9	Landscape and soil profile of Waligapola soil series (Soil Taxonomy: Typic Dystrochrepts; FAO/WRB Legend: Haplic Cambisols, Eutric,	•
Fig. 6.10	Haplohumults; FAO/WRB Legend: Cutanic Alisols, Skeletic, Humic,	77
Fig. 6.11	Epidystric) (Mapa et al. 2005)	78
Fig. 6.12	Typic Hapludults; FAO/WRB Legend: Cutanic Acrisols, Hyperdystric,	79
Fig. 6.13	Cleyic, Humic) (Mapa et al. 2005) Landscape and Soil Profile of Ragala Soil Series (Soil Taxonomy: Typic Hapludults; FAO/WRB Legend: Leptic Regosols, (Dystric)	80
Fig. 6.14	(Mapa et al. 2005)	81
	Typic Rhodudults; FAO/WRB Legend: Cutanic Alisols, Chromic, Hyperdystric)	82

Fig. 7.1	One sheet of the soil map showing the distribution of major soil series of the Wet zone of Sri Lanka (Mapa et al. 1999; Modified	
	by V. Pushpakumara)	84
Fig. 7.2	Landscape and soil profile of the Rathupasa series (Soil Taxonomy: Psammentic Plaeudalfs; EAO/WRB legend: Haplic Arenosols,	
	Hypoferralic, Dystric) (Mapa et al. 1999)	86
Fig. 7.3	Landscape and soil profile of Pugoda Series (Soil Taxonomy: Typic Ustifluents; FAO/WRB Legend: Haplic Fluvisols, Clayic, Dystric)	
	(Mapa et al. 1999)	86
Fig. 7.4	Landscape and soil profile of the Boralu series (Soil Taxonomy: Typic	
	Plaeudults; FAO/WRB Legend: Pisolithic Plinthosols, Clayic, Dystric)	
	(Mapa et al. 1999)	87
Fig. 7.5	Landscape and soil profile of Kiribthkumbura series (Soil Taxonomy:	
	Aeric Fulvaquents; FAO/WRB Legend: Haplic Gleysols, Colluvic,	
	Eutric, Gleyic) (Mapa et al. 1999)	89
Fig. 7.6	Landscape and soil profileof Ukuwela soil series (Soil Taxonomy:	
	Typic Rhodudults; FAO/WRB Legend: Pisolithic Plinthosols, Clayic,	
F: 5.5	Dystric)	90
Fig. 7.7	Landscape and soil profile of Waddagala Series (Soil Taxonomy: Typic Haplohumults; FAO/WRB Legend; Cutanic Acrisols, Humic)	
	(Mapa et al. 1999)	90
Fig. 7.8	Landscape and soil profile of Mattakele series (Soil Taxonomy: Typic	
	Hapludults; FAO/WRB Legend: Cutanic Acrisols, Clayic)	
	(Mapa et al. 1999)	92
Fig. 7.9	Landscape and soil profile of Maskeliya Series (Soil Taxonomy: Typic	
	Distropepts; FAO/WRB Legend: Haplic Regosols, Dystric, Skeletic)	
	(Mapa et al. 1999)	92
Fig. 7.10	Landscape and soil profile of Nuwara Eliya series (Soil Taxonomy:	
	Typic Plaeudults; FAO/WRB Legend: Cutanic Acrisols, Humic)	93
Fig. 8.1	Land use systems of Sri Lanka (Adopted from LADA Sri Lanka project,	
TI 0.2	NRMC)	97
Fig. 8.2	Area under different land use systems as percentage of total area	0.0
F' 0.1	of Sri Lanka. Adopted from LADA Sri Lanka project, NRMC	98
Fig. 9.1	Soil degradation due to deforestation	106
Fig. 9.2	Soil erosion in road embankment	107
Fig. 9.3	Vegetable cultivation in steep sloping lands in Nuwara Eliya District	111
Fig. 9.4	Landslides occurring during an event of a heavy rainstorm	112
Fig. 9.5	Coastal erosion in Sri Lanka	112
Fig. 10.1	Seasonal NO ₃ variations in shallow sand aquifers in Sri Lanka in areas	100
	under intensive fertilized irrigation (FAO 1990)	123

List of Tables

Table 1.1	Increasing pressure for land with time on total and arable lands in Sri Lanka	4
Table 1.2	Legend to the first provisional soil map published by Joachim in 1945	-
	as shown in Fig. 1.3	7
Table 1.3	Great Soil Groups of Sri Lanka as classified by Mooman	·
	and Panabokke (1961)	7
Table 1.4	Great soil groups of Sri Lanka according to the classification of De	
	Alwis and Panabokke (1972) and the 7th Approximation equivalents	10
Table 2.1	Agro-ecological regions of Low Country Wet Zone	20
Table 2.2	Agro-ecological regions of Mid-Country Wet Zone	20
Table 2.3	Agro-ecological regions of Up Country Wet Zone	20
Table 2.4	Agro-ecological regions of Low Country Intermediate Zone	20
Table 2.5	Agro-ecological regions of Mid-Country Intermediate Zone	20
Table 2.6	Agro-ecological regions of Up Country Intermediate Zone	21
Table 2.7	Agro-ecological regions of Low Country Dry Zone	21
Table 4.1	Great soil group (GSG), parent material and taxonomic equivalent	
	according to the 7th approximation for the soils of the wet zone and	
	semi-wet intermediate zone (Sources de Alwis and Panabokke 1972;	
	Mapa et al. 1999)	37
Table 4.2	Great soil group (GSG), parent material and taxonomic equivalent	
	according to the 7th approximation for the soils of the dry zone and	
	semi-dry intermediate zone (Sources de Alwis and Panabokke 1972;	
	Mapa et al. 2010)	39
Table 4.3	Mineralogical information of soils collected from selected locations	
	of Wet zone (Mineralogical information was collected from different	
	sources and suborders were assigned by considering the location and	
	mineralogy, Sources Indraratne 2006; Kyuma and Kawaguchi 1967;	
	Panabokke 1958; Yapa 1988)	41
Table 4.4	Mineralogical information of soils collected from selected locations	
	of Intermediate zone (Mineralogical information was collected from	
	different sources and suborders were assigned by considering the	
	location and mineralogy. Sources Kyuma and Kawaguchi 1967;	
	Mapa 1992; Yapa 1988)	42
Table 4.5	Mineralogical information of soils collected from selected locations	
	of dry zone (mineralogical information was collected from different	
	sources and suborders were assigned by considering the location and	
	mineralogy. <i>Sources</i> Indraratne 2006; Kyuma and Kawaguchi 1967;	12
T.LL 5 1	Yapa 1988)	43
Table 5.1	The well to moderately well-drained soil series of the residual/	
	erosional surfaces in the Dry zone, Great Soil Groups and their	

	equivalent Soil Taxonomic and WRB legends (De Silva and	
Table 5.2	Dassanayake 2010)	54
	equivalent Soil Taxonomic, and WRB legends (De Silva and	
Table 5.3	Dassanayake 2010)	54
	and WRB legends (Dassanayake and De Silva 2010a)	59
Table 5.4	The soil series formed in two physiographic regions of the flood plains, Great Soil Groups, and their equivalents of Soil Taxonomic	
	and WRB legends (Dassanayake and De Silva 2010b)	65
Table 6.1	The soil series occurring in the erosional/residual planation surfaces	0.5
Table 0.1	in the low country intermediate zone, Great Soil Groups and their	
	equivalent Soil Taxonomic and WRB legends	
	(Dasanayake et al. 2005)	71
Table 6.2	The soil series occurring in coastal plains and flood plains of the	
	depositional surfaces in the low country intermediate zone, great soil	
	groups and their equivalent Soil Taxonomic and WRB legends	
	(Dassanayake et al. 2005)	71
Table 6.3	The soil series occurring in the Erosional/residual planation surface in	
	mid-country Intermediate zone, great soil groups and their equivalent	
	Soil Taxonomic and WRB legends (De Silva et al. 2005)	72
Table 6.4	The soil series occurring in the up country intermediate zone, great	
	soil groups and their equivalent Soil Taxonomic and WRB legends	
	(Dassanayake and De Silva 2005)	72
Table 7.1	Soils series occurring in the coastal and flood plains in the	
	depositional surfaces in the low country wet zone, their local names,	0.5
Table 7.2	Soil Taxonomic and WRB equivalents	85
Table 7.2	The soil series occurring in erosional/residual plantation surfaces in the low country wet zone, Great Soil Group names and their	
	equivalent Soil Taxonomic and WRB legends (Senarath and	
	Dassanayake 1999)	85
Table 7.3	The soil series occurring in the mid-country Wet zone, their Great Soil	05
14010 713	Group names and their equivalent Soil Taxonomic and WRB legends	
	(Senarath and Dassanayake 1999)	88
Table 7.4	The soil series occurring in the up country wet zone, their Great Soil	
	Group names and their equivalent Soil Taxonomic and WRB legends	
	(Dassanayake and Hettiarachchi 1999)	91
Table 8.1	Major land use types of Sri Lanka—2014	96
Table 8.2	Change of the extents under major crops in Sri Lanka from 1962 to	
	1982 and 1982 to 2000 (in thousands of hectare, Source Survey	
	Department (2007). National Atlas of Sri Lanka)	98
).1	Human activities and root causes of soil degradation in Sri Lanka	106
.2	Soil loss in different land-use systems in Sri Lanka	100
0.2	(Krishnarajah 1984)	108
9.3 .e 9.4	Tolerable soil erosion rates (Krishnaraja 1984)	109
.U 7.H	of Sri Lanka	109
Table 9.5	Soil Erodibility values (K factor) of some Great Soil Groups	107
	in Sri Lanka	110

st of Tables xxi

T 11 0 6		
Table 9.6	Sediment yield from some catchments in mid- and up country	
	of Sri Lanka (Wallingford 1995)	110
Table 9.7	Sedimentation rates of reservoirs in Sri Lanka	110
Table 9.8	Fertility status of soils in the country—Number of and percentage	
	of soil series falling under different levels of available P,	
	Exchangeable K, and Organic carbon contents	113
Table 9.9	Some properties of intensively cultivated soils affected	
	by eutrophication	114
Table 9.10	Soil salinity reported in rice lands in Sri Lanka	115
Table 10.1	Concentrations of Arsenic in rice soils (µg/g)	120
Table 10.2	Trace elements in fertilizers collected from different regions	
	in Sri Lanka (mg/kg) (Chandrajith et al. 2010)	121
Table 10.3	Trace elements in fertilizer samples and manures collected	
	from Sri Lanka (mg/kg)	122
Table 10.4	Trace element levels from organic fertilizers from Sri Lanka	122