
The Programmer’s Brain
What every programmer needs to know about cognition

FELIENNE HERMANS
Foreword by Jon Skeet

11
MANNING
Shelter Island

contents
Joreword xni
preface xv
acknowledgments xvii
about this book xix
about the author xxii
about the cover illustration xxiii

Part 1 On reading code better........................... 1
~1 Decoding your confusion while coding 3

1.1 Different kinds of confusion in code 4
Confusion type 1: Lack of knowledge 5- Confusion type 2: Lack of
information 5 ■ Confusion type 3: Lack of processing power 6

1.2 Different cognitive processes that affect coding 6
LTM and programming 7 • STM and programming 7
Working memory and programming 8

1.3 Cognitive processes in collaboration 9
A brief dissection of how the cognitive processes interacted 9
Cognitive processes regarding programming tasks 10

vii

CONTENTS

Speed reading for code 13
2.1 Quickly reading code 14

What just happened in your brain? 15 ■ Reexamine your
reproduction 16* Reexamining your second attempt at
reproducing code 17* Why is reading unfamiliar code hard? 18

2.2 Overcoming size limits in your memory 18
The power of chunking 19* Expert programmers can remember
code better than beginners 22

2.3 You see more code than you can read 23
Iconic memory 23* It’s not what you remember; it’s the way you
remember it 25 ■ Practice chunking 30

How to learn programming syntax quickly 33
3.1 Tips for remembering syntax 34

Disruptions play havoc with your workflow 34

3.2 How to learn syntax quickly with flashcards 35
When, to use the flashcards 36 ■ Expanding the set of

flashcards 36 ■ Thinning the set of flashcards 36

3.3 How to not forget things 37
Why do we forget memories ? 38 * Spaced repetition 39

3.4 How to remember syntax longer 40
Two forms of remembering information 40 ■ fust seeing
information is not enough 41 ■ Remembering information
strengthens memories 42 ■ Strengthen memories by actively
thinking 42

How to read complex code 46
4.1 Why it’s hard to understand complex code 47

What’s the difference between working memory and STM? 48
Types of cognitive load as they relate to programming 49

4.2 Techniques to reduce cognitive load 51
Refactoring 51 * Replacing unfamiliar language constructs 52
Code synonyms are great additions to a flashcard deck 55

4.3 Memory aids to use when your working memory is
overloaded 56

Creating a dependency graph 56* Using a state table 59
Combining dependency graphs and state tables 61

CONTENTS ix

Part 2 On thinking about code65
Reaching a deeper understanding of code

5.1 Roles of variables framework 68
67

Different variables do different things 68 ■ Eleven roles to cover
almost all variables 69

5.2 Roles and paradigms 71
Benefits of roles 72 ■ Hungarian notation 73

5.3 Gaining a deeper knowledge of programs 75
Text knowledge vs. plan knowledge 75 ■ Different stages of
program understanding 76

5.4 Reading text is similar to reading code 79
What happens in the brain when we read code? 79 ■ If you can
learn French, you can learn Python 81

5.5 Text comprehension strategies applied to code 84
Activating prior knowledge 84 ■ Monitoring 85 ■ Determining
the importance of different lines of code 86 ■ Inferring the meaning
of variable names 87 ■ Visualizing 88 ■ Questioning 89
Summarizing code 90

Getting better at solving programming problems
6.1 Using models to think about code 92

The benefits of using models 92

91

6.2 Mental models 94
Examining mental models in detail 96 ■ Learning new mental
models 97 ■ How to use mental models efficiently when thinking
about code 97

6.3 Notional machines 102
What is a notional machine? 103 ■ Examples of notional
machines 103 ■ Different levels of notional machines 105

6.4 Notional machines and language 106
Expanding sets of notional machines 106 ■ Different notional
machines can create conflicting mental models 107

6.5 Notional machines and schemata 108
Why schemata matters 108 ■ Are notional machines
semantics ? 109

X CONTENTS

Misconceptions: Bugs in thinking 110
-/

7.1 Why learning a second programming language is easier than
learning the first one 111

How to increase the chances of benefiting from, existing programming
knowledge 113 ■ Different forms of transfer 114 ■ Already
knowing something: Curse or blessing? 115 ■ The difficulties of
transfer 116

7.2 Misconceptions: Bugs in thinking 117
Debugging misconceptions with conceptual change 118
Suppressing misconceptions 119 ■ Misconceptions about
programming languages 120 ■ Preventing misconceptions while
learning a new programming language 122 ■ Diagnosing
misconceptions in a new codebase 122

Ohl WRITIblG BETTER CODE 1

How to get better at naming things 127
8.1 Why naming matters 128

Why naming matters 129' Different perspectives on
naming 129 ■ Initial naming practices have a lasting
impact 131

8.2 Cognitive aspects of naming 133
Formatting names supports your STM 133' Clear names help
yourLTM 134' Variable names can contain different types of
information to help you understand them 135' When to evaluate
the quality of names 136

8.3 What types of names are easier to understand? 137
To abbreviate or not to abbreviate? 137' Snake case or camel
case? 140

8.4 The influence of names on bugs 141
Code with bad names has more bugs 141

8.5 How to choose better names 142
Name molds 142' Feitelson’s three-step model for better variable
names 145

Avoiding bad code and cognitive load: Two frameworks 147
9.1 Why code with code smells creates a lot of cognitive load 148

A brief intro to code smells 148 • How code smells harm
cognition 151

CONTENTS xi

9.2 The influence of bad names on cognitive load 153
Linguistic antipatterns 154 ■ Measuring cognitive load 155
Linguistic antipattems and cognitive load 158 ■ Why linguistic
antipattems cause confusion 159

Getting better at solving complex problems 160
10.1 What is problem solving? 161

Elements of problem solving 161 ■ State space 161

10.2 What is the role of the LTM when you solve programming
problems? 162

Is problem, solving a cognitive process on its own? 162 ■ Howto
teach your LTM to solve problems 164 ■ Two types of memories
that play a role in problem solving 164

10.3 Automatization: Creating implicit memories 167
Implicit memories over time 168 ■ Why automatization will make
you program quicker 170 ■ Improving implicit memories 171

10.4 Learning from code and its explanation 172
A new type of cognitive load: Germane load 173 ■ Using worked
examples in your working life 175

Part 4 On collaborating on code177
The act of writing code 179
11.1 Different activities while programming 180

Searching 180 ■ Comprehension 181 ■ Transcription 181
Incrementation 181 ■ Exploration 182 ■ What about
debugging? 182

11.2 Programmer interrupted 183
Programming tasks require a warm-up 183 ■ What happens after an
interruption? 184' How to better prepare for interruptions 185
When to interrupt a programmer 187' Some thoughts on
multitasking 189

Designing and improving larger systems 191
12.1 Examining the properties of codebases 192

Cognitive dimensions 192 ■ Using CDCB to improve your
codebase 200 • Design maneuvers and their trade-offs 201

12.2 Dimensions and activities 202
Impact of dimensions on different activities 202 ■ Optimizingyour
codebase for expected activities 204

xii CONTENTS

How to onboard new developers 205
13.1 Issues in the onboarding process 206
13.2 Differences between experts and novices 207

Beginners’behavior in more depth 207 • Difference between seeing
concepts concretely and abstractly 211

13.3 Activities for a better onboarding process 213
Limit tasks to one programming activity 213 ■ Support the memory
of the onboardee 214 ■ Read code together 216

13.4 Some words to close this book 221

epilogue 221

index 223

foreword
I’ve spent a lot of my life thinking about programming, and if you’re reading this
book you probably have too. I haven’t spent nearly as much time thinking about
thinking, though. The concept of our thought processes and how we interact with
code as humans has been important to me, but there has been no scientific study
behind it. Let me give you three examples.

I’m the main contributor to a .NET project called Noda Time, providing an alter
native set of date and time types to the ones built into .NET. It’s been a great environ
ment for me to put time into API design, particularly with respect to naming. Having
seen the problems caused by names that make it sound like they change an existing
value, but actually return a new value, I’ve tried to use names that make buggy code
sound wrong when you read it. For example, the LocalDate type has a PlusDays method
rather than AddDays. I’m hoping that this code looks wrong to most C# developers

date.PlusDays(1);

whereas this looks more reasonable:

tomorrow = today.PlusDays(1) ;

Compare that with the AddDays method in the .NET DateTime type:

date.AddDays(1);

xiii

