Mathematics for Future Computing and Communications

Edited by

LIAO HENG HiSilicon, Shenzhen

BILL McCOLL Huawei Research, Zurich

Contents

	Prefe	ace	page ix	
Part I	Compu	1		
	Intro	oduction to Part I	3	
1	Mathematics, Models and Architectures			
	Bill	6		
	1.1	Introduction	6	
	1.2	Moving Beyond von Neumann	8	
	1.3	Programming-Oriented Models	10	
	1.4	An Algorithm-Oriented Model	15	
	1.5	A Bridging Model	17	
	1.6	Parallel Algorithms and Complexity	25	
	1.7	Networks and Communications	32	
	1.8	Resilience-Oriented Models	35	
	1.9	New Research Directions	48	
2	Mathematics and Software Verification			
	Chen Haibo and Gao Xin			
	2.1	Introduction	54	
	2.2	Basic Theories of Formal Methods	55	
	2.3	Spectrum of Formal Methods	60	
	2.4	Applications of Formal Methods	61	
	2.5	Challenges of Formal Verification in Software Systems	66	
	2.6	Towards Well-Engineered Formal Verification	67	
	2.7	Conclusion	70	
3	Mathematics for Quantum Computing			
	Kong	74		
	3.1	Introduction	75	
	3.2	Quantum Algorithms	78	
	3.3	Quantum Error Correction	83	
	3.4	Quantum Control	87	

4	Ма	thematics for AI: Categories, Toposes, Types		
		niel Bennequin and Jean-Claude Belfiore	98	
	4.1	Introduction	99	
	4.2	History	100	
	4.3	Categories, Topos, Types and Stacks	103	
	4.4	Topos of Deep Neural Networks	115	
	4.5	Information Theories	122	
	4.6	Higher Categories and Homotopy Types	124	
	4.7	Categories and Toposes in Computer Science	126	
Part II	Com	nunications	133	
	Intr	roduction to Part II	135	
5	Mathematics and Compressed Sensing			
		ng Rui and Long Zichao	138	
	5.1	Introduction	138	
	5.2	Sampling Theory and Data Recovery	139	
	5.3	Main Theory and Breakthroughs	140	
	5.4	Algorithms	145	
	5.5	General Compressed Sensing	147	
	5.6	Applications in Industry	149	
	5.7	Open Questions	150	
6	Mathematics, Information Theory, and Statistical Physics			
	Mér	153		
	6.1	Mathematics of Propagation: Maximum Entropy Principle	153	
	6.2	Mathematics of Matrices: Statistical Physics	165	
	6.3	Mathematics of Communications: Information Theory	175	
	6.4	Conclusion	183	
7	Mathematics of Data Networking			
		ongpeng, Miao Lihua and Tang Siyu	187	
	7.1	Introduction	187	
	7.2	System Capacity Region	188	
	7.3	Theory and Algorithms of Network Optimization	188	
	7.4 7.5	The Theory of Network Coding	194	
	7.5 7.6	Mathematics for Internet Quality of Service (QoS)	200	
	7.0	Conclusion	206	
8	Mathematics and Network Science Sun Jie			
	8.1	Introduction	211	
	8.1 8.2	Characterizations of Real Networks	212	
	8.3	Structural Models of Complex Networks	213	
	0.0	Surgerman models of Complex Metworks	215	

	8.4	Community Detection and Network Partition	218	
	8.5	Network Dynamics: Synchronization, Control, and Optimization	220	
	8.6	Data-Driven Analysis: Causal Inference, Automated Modeling	222	
	8.7	Conclusion	223	
Part III	Artifici	al Intelligence	225	
	Introd	luction to Part III	227	
9	Mathematics, Information and Learning			
	Tong Wen and Ge Yiqun			
	9.1	Introduction	230	
	9.2	Definition of Information	231	
	9.3	Neural Network Information	251	
	9.4	Learnability	276	
	9.5	Conclusion	283	
10	Math	ematics and Bayesian Inference		
	Guo	Kaiyang, Lv Wenlong and Zhang Jianfeng	285	
	10.1	Introduction	285	
	10.2	Bayesian Inference	287	
	10.3	Exact Inference in Bayesian Linear Regression	290	
	10.4	Approximate Inference	293	
	10.5	Distributed Inference	300	
	10.6	Bayesian Optimization	301	
	10.7	Bayesian Transfer Learning	304	
	10.8	Designing a Prior	305	
	10.9	Duality between Control and Inference	306	
11	Mathematics, Optimization and Machine Learning			
	Jui S	Shang-Ling	309	
	11.1	Introduction	309	
	11.2	Stochastic Convex Optimization	311	
	11.3	Direct Methods for Non-Convex Optimization	315	
	11.4	Optimization for Deep Learning	319	
	11.5	Open Problems	324	
12	Mathematics of Reinforcement Learning			
	Wu Shuang and Wang Jun			
	12.1	Introduction	329	
	12.2	Bayesian Decision Principle	330	
	12.3		330	
	12.4	Algorithmic Development	340	
	12.5		355	
	12.6	Challenges	366	

Part IV	Future		375		
13	Mathematics and Prospects for Future Breakthroughs				
	Dang	377			
	13.1	Future AI: From Perception to Cognition	377		
	13.2	Future Discovery: From Digital Twin to Quantum Twin	378		
	13.3	Future Unified Computing Architectures	379		
	13.4	Future Wireless Systems	380		
	13.5	Future IP Networks	381		
	13.6	Future Optical Technologies	381		
	13.7	Future Autonomous Driving Networks	382		
	13.8	Future Mathematics: The Analytical Approach	383		
Editors a	and Con	tributing Authors	384		