The Fundamentals of Heavy Tails

Properties, Emergence, and Estimation

Jayakrishnan Nair Indian Institute of Technology, Bombay

Adam Wierman California Institute of Technology

Bert Zwart CWI Amsterdam and Eindhoven University of Technology

Contents

Preface					
Acknowledgments					
1 Introduction					
1.1	Defining Heavy-Tailed Distributions	5			
1.2	Examples of Heavy-Tailed Distributions	9			
1.3	What's Next	24			
1.4	Exercises	24			
Part I Properties 27					
2	Scale Invariance, Power Laws, and Regular Variation	29			
2.1	Scale Invariance and Power Laws	30			
2.2	Approximate Scale Invariance and Regular Variation	32			
2.3	Analytic Properties of Regularly Varying Functions	36			
2.4	An Example: Closure Properties of Regularly Varying Distributions	48			
2.5	An Example: Branching Processes	50			
2.6	Additional Notes	53			
2.7	Exercises	54			
3	Catastrophes, Conspiracies, and Subexponential Distributions	56			
3.1	Conspiracies and Catastrophes	58			
3.2	Subexponential Distributions	62			
3.3	An Example: Random sums	67			
3.4	An Example: Conspiracies and Catastrophes in Random Walks	72			
3.5	Additional Notes	80			
3.6	Exercises	81			
4	Residual Lives, Hazard Rates, and Long Tails	85			
4.1	Residual Lives and Hazard Rates	86			
4.2	Heavy Tails and Residual Lives	90			
4.3	Long-Tailed Distributions	93			
4.4	An Example: Random Extrema	97			
4.5	Additional Notes	100			
4.6	Exercises	101			

Part	II Emergence	105		
5 A	Additive Processes	107		
5.1	The Central Limit Theorem	108		
5.2	Generalizing the Central Limit Theorem	112		
5.3	Understanding Stable Distributions	114		
5.4	The Generalized Central Limit Theorem	118		
5.5	A Variation: The Emergence of Heavy Tails in Random Walks	120		
5.6	Additional Notes	124		
5.7	Exercises	125		
6 I	Multiplicative Processes	127		
6.1	The Multiplicative Central Limit Theorem	128		
6.2	Variations on Multiplicative Processes	131		
6.3	An Example: Preferential Attachment and Yule Processes	138		
6.4	Additional Notes	144		
6.5	Exercises	145		
7]	Extremal Processes	148		
7.1	A Limit Theorem for Maxima	150		
7.2	Understanding Max-Stable Distributions	154		
7.3	The Extremal Central Limit Theorem	156		
7.4	An Example: Extremes of Random Walks	161		
7.5	A Variation: The Time between Record Breaking Events	168		
7.6	Additional Notes	170		
7.7	Exercises	171		
Part III Estimation 175				
8 1	Estimating Power-Law Distributions: Listen to the Body	177		
8.1	Parametric Estimation of Power-Laws Using Linear Regression	179		
8.2	Maximum Likelihood Estimation for Power-Law Distributions	185		
8.3	Properties of the Maximum Likelihood Estimator	187		
8.4	Visualizing the MLE via Regression	189		
8.5	A Recipe for Parametric Estimation of Power-Law Distributions	192		
8.6	Additional Notes	194		
8.7	Exercises	195		
9 I	Estimating Power-Law Tails: Let the Tail Do the Talking	197		
9.1	The Failure of Parametric Estimation	199		
9.2	The Hill Estimator	203		
9.3	Properties of the Hill Estimator	205		
9.4	The Hill Plot	209		
9.5	Beyond Hill and Regular Variation	215		
9.6	Where Does the Tail Begin?	226		
9.7	Guidelines for Estimating Heavy-Tailed Phenomena	233		

9.8	Additional Notes	235
9.9	Exercises	236
Comn	nonly Used Notation	238
References		240
Index		249