ORGANIC MECHANISMS

Reactions, Methodology, and Biological Applications

Second Edition

XIAOPING SUN University of Charleston Charleston, West Virginia

WILEY

CONTENTS

	Preface First Edition Preface			xv xvii
1	Fund	Indamental Principles		
	1.1	Reacti	on Mechanisms and Their Importance	1
	1.2	Eleme	ntary (Concerted) and Stepwise Reactions	2
	1.3	Molec	ularity	4
		1.3.1	Unimolecular Reactions	4
		1.3.2	Bimolecular Reactions	5
	1.4	Kineti	cs	6
		1.4.1	Rate-Laws for Elementary (Concerted) Reactions	6
		1.4.2	Reactive Intermediates and the Steady-State Assumption	9
		1.4.3	Rate-Laws for Stepwise Reactions	12
	1.5	Therm	odynamics	13
		1.5.1	Enthalpy, Entropy, and Free Energy	13
		1.5.2	Reversible and Irreversible Reactions	14
		1.5.3	Chemical Equilibrium	15
	1.6	The T	ransition State	17
		1.6.1	The Transition State and Activation Energy	17
		1.6.2	The Hammond Postulate	18
		1.6.3	The Bell–Evans–Polanyi Principle	19
	1.7	Electro	onic Effects and Hammett Equation	20
		1.7.1	Electronic Effects of Substituents	20
		1.7.2	Hammett Equation	21

	1.8	The Molecular Orbital Theory	23
		1.8.1 Formation of Molecular Orbitals from Atomic Orbitals	23
		1.8.2 Molecular Orbital Diagrams	28
		1.8.3 Resonance Stabilization	30
		1.8.4 Frontier Molecular Orbitals	32
	1.9	Electrophiles/Nucleophiles Versus Acids/Bases	33
		1.9.1 Common Electrophiles	34
		1.9.2 Common Nucleophiles	38
	1.10	1 0	39
	1.11		43
	1.12	The Green Chemistry Methodology	46
	Probl		49
	Refer	rences	51
2	The .	Aliphatic C–H Bond Functionalization	53
	2.1	Alkyl Radicals: Bonding and Their Relative Stability	54
	2.2	Radical Halogenations of the C-H Bonds on sp ³ -Hybridized	
		Carbons: Mechanism and Nature of the Transition States	59
	2.3	Energetics of the Radical Halogenations of Alkanes and Their	
		Regioselectivity	63
		2.3.1 Energy Profiles for Radical Halogenation Reactions of	~~~~
		Alkanes	63
	2.4	2.3.2 Regioselectivity for Radical Halogenation Reactions	64
	2.4	Kinetics of Radical Halogenations of Alkanes 2.4.1 Alkanes	68
		2.4.1 Arkanes 2.4.2 Hydrocarbons Containing an Unsaturated Group	68 70
	2.5	Radical Initiators	70
	2.5	2.5.1 Azobisisobutyonitrile (AIBN)	73
		2.5.2 Dibenzol Peroxide	74
	2.6	Transition-Metal-Compounds Catalyzed Alkane C—H Bond	74
	2.0	Activation and Functionalization	76
		2.6.1 The C–H Bond Activation via Agostic Bond	76
		2.6.2 Mechanisms for the C–H Bond Oxidative	, ,
		Functionalization	77
	2.7	Superacids Catalyzed Alkane C-H Bond Activation and	
		Functionalization	80
	2.8	Nitration of the Aliphatic C–H Bonds via the Nitronium NO_2^+ Ion	84
	2.9	Photochemical and Thermal C-H Bond Activation by the	
		Oxidative Uranyl UO ₂ ²⁺ (VI) Cation	86
	2.10	Enzyme Catalyzed Alkane C-H Bond Activation and	
		Functionalization: Biochemical Methods	88
	Probl	ems	91
	Refer	rences	93

3		tionaliz	ation of the Alkene C=C Bond by Electrophilic	95
	3.1		wnikov Additions via Intermediate Carbocations	96
		3.1.1	Protonation of the Alkene C=C π Bond by Strong Acids	
		217	to form Carbocations	96
		3.1.2	Additions of Hydrogen Halides (HCl, HBr, and HI) to	
			Alkenes: Mechanism, Regiochemistry, and Stereochemistry	98
		3.1.3	Acid and Transition-Metal Catalyzed Hydration of	90
		5.1.5	Alkenes and Its Applications	103
		3.1.4	Acid Catalyzed Additions of Alcohols to Alkenes	105
		3.1.5		100
			Mechanistic and Synthetic Aspects	109
		3.1.6	Electrophilic Addition to the $C \equiv C$ Triple Bond via	
			a Vinyl Cation Intermediate	113
	3.2	Electro	ophilic Addition of Hydrogen Halides to Conjugated Dienes	114
	3.3		Markovnikov Radical Addition	116
	3.4	Hydro	boration: Concerted, Non-Markovnikov syn-Addition	117
		3.4.1	Diborane (B ₂ H ₆): Structure and Properties	117
		3.4.2	Concerted, Non-Markovnikov syn-Addition of Borane	
			(BH_3) to the Alkene C=C Bond: Mechanism,	
			Regiochemistry, and Stereochemistry	118
		3.4.3	Synthesis of Special Hydroborating Reagents	122
		3.4.4	Reactions of Alkenes with Special Hydroborating	
			Reagents: Regiochemistry, Stereochemistry, and	100
	25	T	Their Applications in Chemical Synthesis	123
	3.5		tion-Metal Catalyzed Hydrogenation of the Alkene C=C	126
		3.5.1	(syn-Addition) Mechanism and Stereochemistry	120
			Synthetic Applications	130
		3.5.3		150
		5.5.5	Fats (Oils)	132
	3.6	Halog	enation of the Alkene C \equiv C Bond (Anti-Addition):	
			anism and its Stereochemistry	133
	Probl		•	138
	Refe	rences		141
4	Func	tionaliz	ration of the Alkene C=C Bond by Cycloaddition	
	Reac	tions		143
	4.1	Cyclo	addition of the Alkene C=C Bond to Form	
			Membered Rings	144
			Epoxidation	144
		4.1.2		146
	4.2	Cyclo	additions to Form Four-Membered Rings	150

$\mathbf{C} = \mathbf{C} + \mathbf{C}$ а ъ 3 Functi 171 1.:1:

	4.3	Diels-Alder Cycloadditions of the Alkene C=C Bond to Form	
		Six-Membered Rings	153
		4.3.1 Frontier Molecular Orbital Interactions	155
		4.3.2 Substituent Effects	158
		4.3.3 Other Diels-Alder Reactions	160
	4.4	1,3-Dipolar Cycloadditions of the C=C and Other Multiple	
		Bonds to Form Five-Membered Rings	167
		4.4.1 Oxidation of Alkenes by Ozone (O_3) and Osmium	
		Tetraoxide (OsO ₄) via Cycloadditions	167
		4.4.2 Cycloadditions of Nitrogen-Containing 1,3-Dipoles to	
		Alkenes	171
		4.4.3 Cycloadditions of the Dithionitronium (NS_2^+) Ion to	
		Alkenes, Alkynes, and Nitriles: Making CNS-Containing	
		Aromatic Heterocycles	173
	4.5	Other Pericyclic Reactions	181
		4.5.1 Conjugated Trienes	181
		4.5.2 The Cope Rearrangement	182
		4.5.3 Conjugate Dienes	184
		4.5.4 The 4π -Cycloaddition Between the N=N Bonds	185
		4.5.5 The 4π -Cycloaddition of Buckminsterfullerene C ₆₀	185
	4.6	Diels-Alder Cycloadditions in Water: The Green Chemistry	
		Methods	186
	4.7	Biological Applications	192
		4.7.1 Photochemical Synthesis of Vitamin D_2 via a Cyclic	
		Transition State	192
		4.7.2 Ribosome-Catalyzed Peptidyl Transfer via a Cyclic	
		Transition State: Biosynthesis of Proteins	192
	Probl	ems	195
	Refer	ences	197
_	-		
5	The	Aromatic C–H Bond Functionalization and Related Reactions	199
	5.1	Aromatic Nitration: All Reaction Intermediates and Full	
		Mechanism for the Aromatic C-H Bond Substitution by	
		Nitronium (NO ₂ ⁺) and Related Electrophiles	200
		5.1.1 Charge-Transfer Complex [ArH, NO_2^+] Between Arene	
		and Nitronium	201
		5.1.2 Ion-Radical Pair [ArH ⁺ , NO ₂]	202
		5.1.3 Arenium $[Ar(H)NO_2]^+$ Ion	202
		5.1.4 Full Mechanism for Aromatic Nitration	203
	5.2	Mechanisms and Synthetic Utility for Aromatic C-H Bond	
		Substitutions by other Related Electrophiles	204
	5.3	The Iron (III) Catalyzed Electrophilic Aromatic C-H Bond	
		Substitution	212

5.4 The Electrophilic Aromatic C-H Bond Substitution Reactions					
	via S _N 1 and S _N 2 Mechanisms	219			
	5.4.1 Reactions Involving S _N 1 Steps	219			
	5.4.2 Reactions Involving S _N 2 Steps	224			
5.5	Substituent Effects on the Electrophilic Aromatic Substitution				
	Reactions	225			
	5.5.1 Ortho- and para-Directors	227			
	5.5.2 Meta-Directors	229			
5.6	Isomerizations Effected by the Electrophilic Aromatic				
	Substitution Reactions	231			
5.7	Electrophilic Substitution Reactions on the Aromatic				
	Carbon-Metal Bonds: Mechanisms and Synthetic Applications	235			
	5.7.1 Aryl Grignard and Aryllithium Compounds	236			
	5.7.2 Ortho-Metallation-Directing Groups (o-MDGs):				
	Mechanism and Synthetic Applications	237			
5.8	Nucleophilic Aromatic Substitution via a Benzyne (Aryne)				
	Intermediate: Functional Group Transformations on Aromatic				
	Rings	239			
5.9	Nucleophilic Aromatic Substitution via an Anionic				
	Meisenheimer Complex	243			
5.10	Biological Applications of Functionalized Aromatic Compounds	247			
Proble	ems	251			
Refere	References 254				

6	Nucleophilic Substitutions on sp ³ -Hybridized Carbons: Functional	
	Group Transformations	257

6.1	Nucle	ophilic Substitution on Mono-Functionalized sp ³ -	
	Hybrid	dized Carbon	257
6.2	Functi	onal Groups which are Good and Poor Leaving Groups	259
6.3	Good	and Poor Nucleophiles	261
6.4	S _N 2 R	eactions: Kinetics, Mechanism, and Stereochemistry	263
	6.4.1	Mechanism and Stereochemistry for S _N 2 Reactions	263
	6.4.2	Steric Hindrance on S _N 2 Reactions	266
	6.4.3	Effect of Nucleophiles	269
	6.4.4	Solvent Effect	271
	6.4.5	Effect of Unsaturated Groups Attached to the	
		Functionalized Electrophilic Carbon	272
6.5	Analy	sis of the S _N 2 Mechanism Using Symmetry Rules and	
	Molec	ular Orbital Theory	273
	6.5.1	The S _N 2 Reactions of Methyl and Primary Haloalkanes	
		RCH_2X (X = Cl, Br, or I; R = H or an Alkyl Group)	273
	6.5.2	Reactivity of Dichloromethane CH ₂ Cl ₂	276

	6.6	S _N 1 F	Reactions: Kinetics, Mechanism, and Product Development	278
		6.6.1	The S _N 1 Mechanism and Rate Law	278
		6.6.2	Solvent Effect	280
		6.6.3	Effects of Carbocation Stability and Quality of Leaving	
			Group on the S _N 1 Rates	280
		6.6.4	Product Development for S _N 1 Reactions	284
	6.7	Comp	petitions Between S_N1 and S_N2 Reactions	286
	6.8	Some	Useful S _N 1 and S _N 2 Reactions: Mechanisms and Syntheti	с
		Perspe	ectives	290
		6.8.1	Nucleophilic Substitution Reactions Effected by Carbon	
			Nucleophiles	291
		6.8.2	Synthesis of Primary Amines	295
		6.8.3	Synthetic Utility of Triphenylphosphine: A Strong	
			Phosphorus Nucleophile	296
		6.8.4	Neighboring Group-Assisted S _N 1 Reactions	297
		6.8.5	Nucleophilic Substitution Reactions of Alcohols Catalyze	ed
			by Solid Bronsted Acids: A Green Chemistry Approach	301
	6.9		gical Applications of Nucleophilic Substitution Reactions	303
		6.9.1	Biomedical Applications	303
		6.9.2	Glycoside Hydrolases: Enzymes Catalyzing Hydrolytic	
			Cleavage of the Glycosidic Bonds by the S _N 2-Like	
			Reactions	304
		6.9.3	Biosynthesis Involving Nucleophilic Substitution	
			Reactions	309
		6.9.4	An Enzyme-Catalyzed Nucleophilic Substitution of an	
	D 11		Haloalkane	310
	Probl			312
	Refer	rences		314
7	Elim	inations	X	317
				517
	7.1		mination: Bimolecular β -Elimination of H/LG and its	
			chemistry and Stereochemistry	318
		7.1.1	Mechanism and Regiochemistry	318
				322
	7 0	7.1.3	Stereochemistry	325
	7.2		sis of the E2 Mechanism Using Symmetry Rules and	
			ular Orbital Theory	326
		7.2.1	Chain-Like Haloalkanes	326
		7.2.2	Halocyclohexane	327
	7.3	7.2.3	Quantitative Theoretical Studies of E2 Reactions	331
			ty Versus Nucleophilicity for Various Anions	332
	7.4	Compe	etition of E2 and S _N 2 Reactions	334

7.5	E1 Elin	nination: Stepwise β -Elimination of H/LG via an	
	Interme	diate Carbocation and its Rate-Law	336
	7.5.1	Mechanism and Rate Law	336
	7.5.2	E1 Dehydration of Alcohols	338
7.6	Energy	Profiles for E1 Reactions	339
	7.6.1	The Bell-Evans-Polanyi Principle	339
	7.6.2	The E1 Dehydration of Alcohols (ROH)	340
	7.6.3	The E1 Dehydrohalogenation of Haloalkanes	
		$(\mathbf{RX}, \mathbf{X} = \mathbf{Cl}, \mathbf{Br}, \text{ or } \mathbf{I})$	342
7.7	The E1	Elimination of Ethers	344
7.8	Intramo	blecular (Unimolecular) Eliminations via Cyclic	
	Transiti	ion States	345
	7.8.1	Concerted, syn-Elimination of Esters	345
	7.8.2	Selenoxide Elimination	347
	7.8.3	Silyloxide Elimination	347
	7.8.4	Unimolecular β-Elimination of Hydrogen Halide from	
		Haloalkanes	348
7.9		nisms for Reductive Elimination of LG ¹ /LG ² (Two	
		onal Groups) on Adjacent Carbons	349
7.10		Elimination Giving a Carbene: A Mechanistic Analysis	
	Using S	Symmetry Rules and Molecular Orbital Theory	353
	7.10.1		
		(CHCl ₃) Giving Dichlorocarbene (CCl ₂)	353
	7.10.2	Formation of a Carbene by Unimolecular α -Elimination	
		of a Haloalkane and the Subsequent Rearrangement to an	
		Alkene via a C-H (C-D) Bond Elimination	356
7.11		limination	356
7.12		ical Applications: Enzyme-Catalyzed Biological	
		ation Reactions	358
	7.12.1	The Enzyme-Catalyzed β-Oxidation of Fatty Acyl	
		Coenzyme A	358
	7.12.2	Elimination Reactions Involved in Biosynthesis	360
Probl	ems		362
Refer	ences		364
			_
Nucle	eophilic	Additions and Substitutions on Carbonyl Groups	367
8.1	Nucleo	philic Additions and Substitutions of Carbonyl	
	Compo		367
8.2	-	philic Additions of Aldehydes and Ketones and Their	-
		ical Applications	370
	8.2.1	Acid and Base Catalyzed Hydration of Aldehydes and	
		Ketones	370

8

	8.2.2	Acid Catalyzed Nucleophilic Additions of Alcohols to	
		Aldehydes and Ketones	373
	8.2.3	Biological Applications: Cyclic Structures of	
		Carbohydrates	376
	8.2.4	Addition of Sulfur Nucleophile to Aldehydes	379
	8.2.5	Nucleophilic Addition of Amines to Ketones and	
		Aldehydes	381
	8.2.6	Nucleophilic Additions of Hydride Donors to Aldehyde	s
		and Ketones: Organic Reductions and Mechanisms	384
8.3	Biolog	gical Hydride Donors NAD(P)H and FADH ₂	386
8.4		ation of Carboxylic Acids via Nucleophilic Substitutions	
		Carbonyl Carbons	390
	8.4.1	Reactions of Carboxylic Acids with Thionyl Chloride	390
	8.4.2	Esterification Reactions, Synthetic Applications, and	
		Green Chemistry Methods	391
	8.4.3	Formation of Anhydrides	396
	8.4.4	Nucleophilic Addition with Alkyllithium	396
8.5	Nucleo	ophilic Substitutions of Acyl Derivatives and Their	
		cical Applications	398
	8.5.1	Nucleophilic Substitutions of Acyl Chlorides and	
		Anhydrides	398
	8.5.2	Hydrolysis and Other Nucleophilic Substitutions of	
		Esters	400
	8.5.3	Biodiesel Synthesis and Reaction Mechanism	401
	8.5.4	Biological Applications: Mechanisms of Serine-Type	
		Hydrolases	403
8.6	Reduct	tion of Acyl Derivatives by Hydride Donors	409
8.7		es of the Nucleophilic Addition and Substitution of	
	•	Derivatives	410
Proble			413
Refer	ences		416
React	tivity of	the α-Hydrogen to Carbonyl Groups	417
9.1	Format	ion of Enolates and Their Nucleophilicity	417
	9.1.1	Formation of Enolates	417
	9.1.2	Molecular Orbitals and Nucleophilicity of Enolates	421
9.2	Alkyla	tion of Carbonyl Compounds (Aldehydes, Ketones,	
		ters) via Enolates and Hydrazones	423
	9.2.1		423
	9.2.2		425
9.3	Aldol I	Reactions	427
	9.3.1	Mechanism and Synthetic Utility	427
	9.3.2	Stereoselectivity	435

		9.3.3	Other Synthetic Applications	439
	9.4	Acylati	on Reactions of Esters via Enolates: Mechanism	
			nthetic Utility	444
	9.5	Biologi	cal Applications: Roles of Enolates in Metabolic	
			es in Living Organisms	448
		9.5.1	The Citric Acid Cycle and Mechanism for Citrate	
			Synthase	449
		9.5.2	Ketogenesis and Thiolase	451
	Probl	ems		452
	Refer	ences		455
10	Rear	rangeme	ents	457
	10.1	Major 7	Types of Rearrangements	457
	10.2	Rearran	igement of Carbocations: 1,2-Shift	458
		10.2.1	1,2-Shifts in Carbocations Produced from Acyclic	
			Molecules	459
		10.2.2	1,2-Shifts in Carbocations Produced from Cyclic	
			Molecules—Ring Expansion	461
		10.2.3	Resonance Stabilization of Carbocation-Pinacol	
			Rearrangement	463
		10.2.4	In vivo Cascade Carbocation Rearrangements: Biologica	1
			Significance	464
			Acid Catalyzed 1,2-Shift in Epoxides	466
		10.2.6	Anion Initiated 1,2-Shift	466
	10.3	Neighb	oring Leaving Group Facilitated 1,2-Rearrangement	468
			Beckmann Rearrangement	468
		10.3.2	Hofmann Rearrangement	470
		10.3.3		471
		10.3.4	Acid Catalyzed Rearrangement of Organic Peroxides	475
	10.4		e Rearrangement: 1,2-Rearrangement of Hydrogen	
			ted by a Lone Pair of Electrons	476
	10.5		Rearrangement	47 9
	10.6		Rearrangement in Water: The Green Chemistry Methods	480
	10.7		nemical Isomerization of Alkenes and its Biological	
		Applica		483
			Photochemical Isomerization	484
			Biological Relevance	485
	10.8		gement of Carbon-Nitrogen-Sulfur Containing	
		Heteroc	ycles	486
	Proble			489
	Refere	ences		491

Index