A First Course in General Relativity

THIRD EDITION

BERNARD SCHUTZ

Cardiff University and Max Planck Institute for Gravitational Physics (Albert Einstein Institute)

Contents

P r	reface t	o the third edition	<i>page</i> ix
Pr	reface t	o the second edition	xi
Pı	reface t	o the first edition	xiii
1	Specia	1	
	1.1	Fundamental principles of special relativity theory (SR)	1
	1.2	Definition of an inertial observer in SR	3
	1.3	New units	4
	1.4	Spacetime diagrams	5
	1.5	Construction of the coordinates used by another observer	6
	1.6	Invariance of the interval	9
	1.7	Invariant hyperbolae	13
	1.8	Particularly important results	17
	1.9	The Lorentz transformation	21
	1.10	The velocity-addition law	23
	1.11	Paradoxes and physical intuition	23
	1.12	Bibliography	24
	1.13	Appendix: The twin 'paradox' dissected	25
	Exerc	ises	27
2	2 Vector analysis in special relativity		33
	2.1	Definition of a vector	33
	2.2	Vector algebra	36
	2.3	The four-velocity	4 1
	2.4	The four-momentum and its conservation	42
	2.5	Scalar product	44
	2.6	Applications	46
	2.7	Photons	48
	2.8	Bibliography	49
	Exercises		50
3	Tensor analysis in special relativity		56
	3.1	The metric tensor	56
	3.2	Definition of tensors	56
	3.3	The $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ tensors: one-forms	58
	3.4	Gradient of a function is a one-form	62

	3.5	The $\binom{0}{2}$ tensors	66
	3.6	Metric as a mapping of vectors into one-forms	68
	3.7	Finally: $\binom{M}{N}$ tensors	72
	3.8	Index 'raising' and 'lowering'	73
	3.9	Differentiation of tensors	75
	3.10	Bibliography	76
	Exerc		76
4	Perfec	84	
	4.1	Fluids	84
	4.2	Dust: the number-flux vector \vec{N}	85
	4.3	One-forms and surfaces	88
	4.4	Dust again: the stress-energy tensor	91
	4.5	General fluids	93
	4.6	Conservation of energy-momentum	98
	4.7	Perfect fluids	100
	4.8	Importance for general relativity	103
	4.9	Gauss' law	104
	4.10	Bibliography	106
	Exerc	ises	106
5	Preface to curvature		111
	5.1	On the relation of gravitation to curvature	111
	5.2	Tensor algebra in polar coordinates	118
	5.3	Tensor calculus in polar coordinates	124
	5.4	Christoffel symbols and the metric	130
	5.5	Noncoordinate bases	134
	5.6	Looking ahead	138
	5.7	Bibliography	138
	Exerc	ises	138
6	Curved manifolds		141
	6.1	Differentiable manifolds and tensors	141
	6.2	Riemannian manifolds	143
	6.3	Covariant differentiation on a general manifold	149
	6.4	Parallel transport, geodesics, and curvature	152
	6.5	The curvature tensor	156
	6.6	Bianchi identities; Ricci and Einstein tensors	162
	6.7	Curvature in perspective	164
	6.8	Bibliography	165
	Exercises		165

7	Physics	in a curved spacetime	170
	7.1	The transition from differential geometry to gravity	170
	7.2	Physics in slightly curved spacetimes	174
	7.3	Curved intuition	176
	7.4	Conserved quantities	177
	7.5	Bibliography	180
	Exerc	180	
8	The Ein	183	
	8.1	Purpose and justification of the field equations	183
	8.2	Einstein's equations	186
	8.3	Einstein's equations for weak gravitational fields	188
	8.4	Newtonian gravitational fields	192
	8.5	Bibliography	196
	Exerc	ises	197
9	9 Fundamentals of gravitational radiation		202
	9.1	The role of general relativity in the physical Universe	202
	9.2	The propagation of gravitational waves	203
	9.3	The detection of gravitational waves	213
	9.4	The generation of gravitational waves	230
	9.5	The energy carried away by gravitational waves	239
	9.6	Standard sirens	247
	9.7	Bibliography	253
	Exerc	ises	255
10	IO Spherical solutions for stars		267
	10.1	Coordinates for spherically symmetric spacetimes	267
	10.2	Static spherically symmetric spacetimes	269
	10.3	Static perfect-fluid Einstein equations	271
	10.4	The exterior geometry	273
	10.5	The interior structure of the star	274
	10.6	Exact interior solutions	276
	10.7	Realistic stars and gravitational collapse	280
	10.8	Bibliography	291
	Exerc	vises	292
11	Schwa	rzschild geometry and black holes	296
	11.1	Trajectories in the Schwarzschild spacetime	296
	11.2	Nature of the surface $r = 2M$	315

11.3	General black holes	322
11.4	Real black holes in astronomy	337
11.5	Hawking radiation	345
11.6	Bibliography	350
Exerc	ises	352
12 Gravita	2 Gravitational wave astronomy	
12.1	Overview	360
12.2	Astrophysical sources of gravitational waves	362
12.3	Finding weak signals in noise: what is a detection?	373
12.4	The first LIGO and Virgo detections	396
12.5	Bibliography	406
Exerc	ises	407
13 Cosmol	13 Cosmology	
13.1	What is cosmology?	415
13.2	Cosmological kinematics: observing our expanding Universe	418
13.3	Cosmological dynamics: understanding the expanding Universe	438
13.4	Physical cosmology: the evolution of the Universe we observe	447
13.5	Bibliography	462
Exerc	ses	463
Appendix /	A Summary of linear algebra	468
Reference	25	472
Index		491