Programming in Parallel
with CUDA

A Practical Guide

Richard Ansorge

2% CAMBRIDGE
%j:fJ UNIVERSITY PRESS

Contents

List of Figures page X
List of Tables xiii
List of Examples XV
Preface Xix
1 Introduction to GPU Kernels and Hardware 1
1.1 Background 1
1.2 First CUDA Example 2
1.3 CPU Architecture 10
1.4 CPU Compute Power 11
1.5 CPU Memory Management: Latency Hiding Using Caches 12
1.6 CPU: Parallel Instruction Set 13
1.7 GPU Architecture 14
1.8 Pascal Architecture 15
1.9 GPU Memory Types 16
1.10 Warps and Waves 18
1.11 Blocks and Grids 19
1.12 Occupancy 20
2 Thinking and Coding in Parallel 22
2.1 Flynn’s Taxonomy 22
2.2 Kernel Call Syntax 30
2.3 3D Kermel Launches 31
2.4 Latency Hiding and Occupancy 37
25 Parallel Patterns 39
2.6 Parallel Reduce 40
2.7 Shared Memory 51
2.8 Matrix Multiplication 53
2.9 Tiled Matrix Multiplication 61
2.10 BLAS 65
3 Warps and Cooperative Groups 72
3.1 CUDA Objects in Cooperative Groups 75

3.2 Tiled Partitions 80

vii

viil

33
34
3.5
3.6
3.7
3.8

4.1
42
43
4.4
4.5
4.6

5.1
5.2
53
54
5.5
5.6
5.7
5.8
5.9
5.10

6.1
6.2
6.3
6.4

7.1
7.2
73
7.4
7.5
7.6
7.7

8.1
8.2
8.3

Contents

Vector Loading

Warp-Level Intrinsic Functions and Sub-warps
Thread Divergence and Synchronisation
Avoiding Deadlock

Coalesced Groups

HPC Features

Parallel Stencils

2D Stencils

Cascaded Calculation of 2D Stencils
3D Stencils

Digital Image Processing

Sobel Filter

Median Filter

Textures

Image Interpolation

GPU Textures

Image Rotation

The Lerp Function
Texture Hardware

Colour Images

Viewing Images

Affine Transformations of Volumetric Images
3D Image Registration
Image Registration Results

Monte Carlo Applications
Introduction

The cuRAND Library
Generating Other Distributions
Ising Model

Concurrency Using CUDA Streams and Events
Concurrent Kernel Execution

CUDA Pipeline Example

Thrust and cudaDeviceReset

Results from the Pipeline Example

CUDA Events

Disk Overheads

CUDA Graphs

Application to PET Scanners

Introduction to PET

Data Storage and Definition of Scanner Geometry
Simulating a PET Scanner

85
89
90
92
96
103

106
106
118
123
126
134
135

142
143
144
146
147
151
156
157
161
167
175

178
178
185
196
198

209
209
211
215
216
218
225
233

239
239
241
247

Contents

8.4 Building the System Matrix

8.5 PET Reconstruction

8.6 Results

8.7 Implementation of OSEM

8.8 Depth of Interaction (DOI)

8.9 PET Results Using DOI

8.10 Block Detectors

8.11 Richardson—Lucy Image Deblurring

9 Scaling Up

9.1 GPU Selection

9.2 CUDA Unified Virtual Addressing (UVA)
9.3 Peer-to-Peer Access in CUDA

94 CUDA Zero-Copy Memory

9.5 Unified Memory (UM)

9.6 A Brief Introduction to MPI

10 Tools for Profiling and Debugging
10.1 The gpulog Example

10.2 Profiling with nvprof

10.3 Profiling with the NVIDIA Visual Profiler (NVVP)
10.4 Nsight Systems

10.5 Nsight Compute

10.6 Nsight Compute Sections

10.7 Debugging with Printf

10.8 Debugging with Microsoft Visual Studio
10.9 Debugging Kernel Code

10.10 Memory Checking

11 Tensor Cores

11.1 Tensor Cores and FP16
11.2 Warp Matrix Functions
11.3 Supported Data Types
11.4 Tensor Core Reduction
11.5 Conclusion

Appendix A A4 Brief History of CUDA

Appendix B Atomic Operations

Appendix C The NVCC Compiler

Appendix D AVX and the Intel Compiler
Appendix E Number Formats

Appendix F CUDA Documentation and Libraries
Appendix G The CX Header Files

Appendix H Al and Python

Appendix I Topics in C++

Index

259
262
266
268
270
273
274
286

293
295
298
299
301
302
313

325
325
330
333
336
338
339
347
349
352
354

358
358
360
365
366
371

373
382
387
393
402
406
410
435
438
448

ix

1.1
1.2
1.3
14
1.5
1.6
2.1
2.2
23
24
3.1
32
33
4.1
4.2
43
44
4.5
4.6
4.7
5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
59
5.10
6.1
6.2
7.1
1.2

Figures

How to ecnable OpenMP in Visual Studio

Simplified CPU architecture

Moore’s law for CPUs

Memory caching on 4-core Intel Haswell CPU

Hierarchical arrangement of compute cores in an NVIDIA GTX1080
GPU memory types and caches

Latency hiding on GPUs

Pairwise reduction for the last 16 clements of x

Tiled matrix multiplication

Performance of matrix multiplication on an RTX 2070 GPU
Performance of the reduction kernels on a Turing RTX 2070 GPU
Performance differences between reduce kemels

Performance of the reduce_coal_any_vl device function
Performance of 2D 4-point and 9-point stencil codes
Approach to convergence for 512 x 512 arrays

Typical filters used for digital image processing

Result of filters applied to reference image

Noise reduction using a median filter

Batcher sorting networks for N =4 and N =9

Modified Batcher network to find median of nine numbers
Pixel and image addressing

Bilinear interpolation for image pixels

Interpolation modes with NVIDIA textures

Image quality after rotation using nearest pixel and bilinear interpolations

Rotations and scaling of test image

Test image at 32 x 32 resolution

Imagel) dialogue for binary image 10

Affine transformations of a 256 x 256 x 256 MRI head scan
Image registration results

Output from registration program

Calculation of

3D Ising model results showing 2D x-y slice at central z
Timelines for three-step pipeline code generated using NVVP
NVVP timelines for the event2 program

page 6
10
1]
13
16
18
38
40
62
69
88
88

102
111
115
127
127
136
138
138
143
143
145
146
154
156
158
165
175
176
179
207
217
226

7.3
7.4
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
9.1
9.2
10.1
10.2
10.3
104
10.5
10.6
10.7
10.8
109
10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
10.18
10.19
10.20
10.21
10.22
11.1

List of Figures

Scheme for asynchronous host disk IO

Possible topologies for CUDA graph objects

PET detector showing four rings of 48 detectors

Transverse views of coordinate systems used for PET
Encoding scheme for lines of response in PET scanner

PET (c, r) and (x, y) coordinates

PET detector spot maps for second gamma from LOR

Derenzo Phantom transverse and 3D views and generated counts per LOR
MLEM iteration time as a function of the number of thread blocks
PET reconstruction results for MLEM and OSEM with an RTX 2070 GPU
PET depth of interaction errors

LOR paths in blocked PET detectors

Ray tracing through a coordinate aligned block

Image deblurring using the Richardson-Lucy MLEM method
Topologies of HPC systems with multiple GPUs

CUDA unified virtual memory

NVVP timelines for gpulog example: 100 ms per step

NVVP timelines for gpulog example: 100 us per step

NVVP timelines for gpulog example: 2.5 us per step

Nsight Systems start-up screen

Nsight Systems timeline display

Timeline from Figure 10.6 expanded by a factor of ~6 x 10°
Nsight Compute start-up dialog

Profiling results from Nsight Compute

GPU Speed of Light: kernel performance

GPU Speed of Light: roofline plot for two kernels

Compute workload analysis: chart for two kermnels

Memory workload analysis: flow chart for gpu_log kernel
Scheduler statistics

Warp state statistics: showing data for two kernels

Instruction statistics: statistics for two kernels

Occupancy: theoretical and achieved values for gpulog program
Source counters: source and SASS code for gpulog program
Preparing a VS-debugging session

Start of VS debugging after pressing F5

VS debugging at second break point

VS debugging: using Nsight for kemel code

VS CUDA kernel debugging with Nsight plugin

Floating-point formats supported by NVIDIA tensor cores

Appendix Figures

A.1 ToolKit version 10.2 install directory on Windows 10
A2 CUDA samples directory on Windows 10
D.1 Normal scalar and AVX2 eight-component vector multiplication

xi

227
234
240
240
243
245
256
266
267
269
270
274
275
290
294
299
334
335
336
337
338
338
339
339
340
340
341

342
343

343

344
346

347

350

351

352

353

353

359

379
380
394

xii List of Figures

D.2 Visual Studio with ICC installed

E.1 16-bit pattern corresponding to ACO5 in hexadecimal

E.2 IEEE 32-bit floating-point format

G.1 Interpretation of 2D array index as Morton and row-major order
G.2 2D array addresses in Morton and row-major order

395
403
405
432
432

1.1
2.1
2.2
23
24
3.1
32
33
34
3.5
3.6
3.7
4.1
4.2
43
44
4.5
5.1
5.2
53
6.1
6.2
7.1
72
7.3
7.4
8.1
8.2
9.1
92

93
9.4
9.5

Tables

CUDA built-in variables

Flynn’s taxonomy

Kemel launch configurations for maximum occupancy
Features of GPU generations from Kepler to Ampere

Possible combinations of const and restrict for pointer arguments
Member functions for CG objects

Additional member functions for tiled thread blocks

Warp vote and warp match intrinsic functions

The warp shuffle functions

Return values from warp shuffle functions

Behaviour of synchronisation functions

Results from deadlock kernel in Example 3.8

Convergence rates for the stencil2D kernel

Accuracy of stencil2D for arrays of size 1024 x 1024

Results from cascade method using 4-byte floats and arrays of size 1024 x 1024
Performance of 3D kernels for a 256 x 256 x 256 array
Performance of filter9PT kernels on an RTX 2070 GPU
Maximum sizes for CUDA textures

Performance of Examples 5.1-5.3 on an RTX 2070 GPU
Performance of affine3D kernel using an RTX 2070 GPU
Times required for random number generators using an RTX 2070 GPU
Random number distribution functions in C++ and CUDA
CUDA stream and event management functions

C++ <threads> library

Results from asyncDiskIO example using 1 GB data sets
API functions needed for creation of CUDA graphs via capture
Coordinate ranges for PET simulation

Performance of event generators

CUDA device management functions

Values of the CUDA cudaMemcpyKind flag used with
cudaMemcpy functions

CUDA host memory allocation functions

Timing results for CUDA memory management methods
Additional timing measurements using NVPROF

Xiil

page 20

23
38
45
57
76
80
90
91
92
92
96
115
119
123
125
134
151
153
165
197
197
210
226
232
238
246
285
297

299
301
313
313

Xiv

9.6
9.7
9.8
10.1
11.1
11.2
11.3

List of Tables

MPI version history

Core MPI functions

Additional MPI functions

Tuning the number of thread blocks for the gpulog program
CUDA warp matrix functions

Tensor cores supported data formats and tile dimensions
Tensor core performance

Appendix Tables

A.1 NVIDIA GPU generations, 2007--2021

A.2 NVIDIA GPUs from Kepler to Ampere

A.3 Evolution of the CUDA toolkit

B.1 Atomic functions

D.1 Evolution of the SIMD instruction set on Intel processors
E.1 Intrinsic types in C++ (for current Intel PCs)

G.1 The CX header files

G.2 IO functions supplied by cxbinio.h

G.3 Possible flags used in cudaTextureDesc

314
316
320
345
360
366
366

375
376
378
383
394
404
41
416
424

1.1
1.2
1.3
2.1
2.2
23
2.4
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
3.1
32
3.3
34
35
3.6
3.7
3.8
3.9

Examples

cpusum single CPU calculation of a sin integral

ompsum OMP CPU calculation of a sin integral

gpusum GPU calculation of a sin integral

Modifications to Example 1.3 to implement thread-linear addressing
gpu_sin kernel alternative version using a for loop

grid3D using a 3D grid of thread blocks

grid3D_linear thread-linear processing of 3D array

reduce0 kernel and associated host code

reducel kernel using thread-linear addressing

reduce?2 kernel showing use of shared memory

reduce3 kernel permitting non-power of two thread blocks
reduce4 kernel with explicit loop unrolling

shared example kernel showing multiple array allocations
hostmult0 matrix multiplication on host CPU

hostmultl showing use of restrict keyword

gpumult0 kernel simple matrix multiplication on the GPU
gpumultl kernel using restrict keyword on array arguments
gpumult2 kernel using lambda function for 2D array indexing
gputiled kernel: tiled matrix multiplication using shared memory
gputiledl kemel showing explicit loop unrolling

Host code showing matrix multiplication using cuBLAS

reduce5 kemel using syncwarp for device of CC = 7 and higher
coop3D kernel illustrating use of cooperative groups with 3D grids
cgwarp kernel illustrating use of tiled partitions

reduceé6 kemel using warp_shil functions

reduce7 kemel using solely intra-warp communication

reduces8 kernel showing use of cg::reduce warp-level function
reduce7_v1l kemel with vector loading

deadlock kernel showing deadlock on thread divergence
deadlock coalesced revised deadlock kernel using coalesced groups

3.10 reduce7_vl_coal kermel which uses subsets of threads in each warp

3.11
4.1
42

reduce coal_any vl kemel using coalesced groups of any size
stencil2D kernel for Laplace’s equation
stencil2D_sm kernel, tiled shared memory version of stencil2d

XV

page 2

29
30
3]
34
41
44
46
48
49
52
54
56
58
60
61
62
65
66
73
77
79
81
83
85
86
94
97
98
100
107
112

Xvi

43

4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
5.1
5.2
53
54
55
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
7.1
7.2
73
7.4
7.5
7.6
8.1
8.2
83

List of Examples

stencil9PT kernel generalisation of stencil2D using all eight nearest
neighbours

reduce maxdiff kernel for finding maximum difference between two arrays
Modification of Example 4.1 to use array max_diff

zoomfrom kernel for cascaded iterations of stencil2D

stencil3D kernels (two versions)

filter9PT kernel implementing a general 9-point filter

filter9PT 2 kernel using GPU constant memory for filter coefficients
filter9PT 3 kernel with vector loading to shared memory

sobel6PT kernel based on filterSPT 3

The device function a_less

median9 device function

batcher9 kemel for per-thread median of nine numbers

Bilinear and nearest device and host functions for 2D image interpolation
rotatel kernel for image rotation and simple main routine

rotate2 kemnel demonstrating image rotation using CUDA textures
rotate3 kernel for simultancous image rotation and scaling

rotate4 kemel for processing RGBA images

rotate4CV with OpenCvV support for image display

affine3D kemnel used for 3D image transformations

interp3D function for trilinear interpolation

costfun_sumsq kernel: A modified version of affine3D

The struct paramset used for affine image registration

functor cost_functor for evaluation of image registration cost function
Simple host-based optimiser which uses cost functor

Image registration main routine fragment showing iterative optimisation process
piH host calculation of n using random sampling

piH2 with faster host RNG

P1OMP version

piH4 with cuRand Host API

piH5 with cuRand Host API and pinned memory

piHé6 with cudaMemcpyAsync

piG kernel for calculation of & using the cuRand Device API

3D Ising model setup_randstates and init_spins kernels

3D Ising 2D model flip_spins kemel

3D Ising model main routine

Pipeline data processing

eventl program showing use of CUDA events with default stream
event2 program CUDA events with multiple streams

asyncDiskIO program support functions

asyncDiskIO program main routine

CUDA graph program

structs used in fullsim

voxgen kemel for PET event generation

ray_to_cyl device function for tracking gammas to cylinder

113
115
117
119
124
128
130
131
135
136
137
139
148
149
151
154
157
158
163
166
167
169
169
171
173
180
182
183
186
188
188
193
200
201
203
212
219
221
227
229
234
248
249
252

8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11

8.12
8.13
8.14
8.15
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
10.1
10.2
10.3
10.4
10.5
10.6
11.1
112

11.3
114

B.1
B.2
C.1
D.1
D.2

List of Examples

find_spot kemel used to compress full sim results

smPart object with key2lor and lor2key utility functions
smTab structure used for indexing the system matrix

forward project kemel used for MLEM PET reconstruction
backward project and rescale kemels

ray to_cyl_doi and voxgen_doi device functions

ray to Dblock device function

ray_to block2 illustrating C++11 lambda function to reduce code
duplication

track_ray device function which handles calls to ray_to_block2
voxgen block kernel for event generation in blocked PET detector
Richardson—Lucy FP and BP device functions

rl deconv host function

Using multiple GPUs on single host

p2ptest kernel demonstrating P2P operations between two GPUs
Managed memory timing tests reduce_warp_vl kernel and main routine
Managed memory test 0 using cudaMalloc

Managed memory test 1 using cudaMallocHost

Managed memory test 3 using thrust for memory allocation

Managed memory test 5 using cudaHostMallocMapped
Managed memory test 6 using cudaMallocManaged

Extended versions of tests 1 and 5

Reduction using MPI

Compiling and running an MPI program in Linux

Use of mpialltoall to transpose a matrix

Results of matrix transposition program

gpulog program for evaluation of log(1+x)

Results of running gpulog on an RTX 2070 GPU

nvprof output for gpulog example

nvprof with cudaProfilerStart and Stop

Checking the return code from a CUDA call

Use of cuda-memcheck

matmulT Kkernel for matrix multiplication with tensor cores
matmulTs kernel for matrix multiplication with tensor cores and shared
memory

reduceT kernel for reduction using tensor cores

reduce half vl kemel for reduction using the FP16 data type

Appendix Examples

Use of atomicCAS to implement atomicAdd for ints
Use of atomicCAS to implement atomicAdd for floats
Build command generated by Visual Studio

Comparison of Intel ICC and VS compilers

Intel intrinsic functions for AVX2

xvii

257
260
261
262
265
271
276

279
281
283
286
288
295
299
303
305
306
307
308
310
312
316
319
321
323
326
330
331

332
348
355
361

363
367
369

384
385
387
395
397

xviii

D3
D.4
G.1
G.2
G3
G4
G5
G.6
G.7
G.8
G.9
G.10
L1

List of Examples

Multithreaded version of D.2 using OpenMP
gpusaxpy kernel for comparison with host-based versions
Header file cx . h, part 1

Header file cx . h, part 2

Header file cx . h, part 3

Use of cxbinio.h to merge a set of binary files
Header file cxbinio.h, part 1

Header file cxtimers.h

Header file cxtextures.h, part 1

Header file cxtextures.h, part 2 — class txs2D
Header file cxtexturesg.h, part 3 — class txs3D
Header file cxconfun.h

Iterators in C++

399
399
410
411
414
416
418
422
425
426
428
433
442

