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Preface

Optimization problems on smooth manifolds arise in science and engineering as a 
result of natural geometry (e.g., the set of orientations of physical objects in space is 
a manifold), latent data simplicity (e.g., high-dimensional data points lie close to a 
low-dimensional linear subspace, leading to low-rank data matrices), symmetry (e.g., 
observations are invariant under rotation, translation or other group actions, leading to 
quotients) and positivity (e.g., covariance matrices and diffusion tensors are positive 
definite). This has led to successful applications notably in machine learning, computer 
vision, robotics, scientific computing, dynamical systems and signal processing.

Accordingly, optimization on manifolds has garnered increasing interest from 
researchers and engineers alike. Building on 50 years of research efforts that have 
recently intensified, it is now recognized as a wide, beautiful and effective generaliza­
tion of unconstrained optimization on linear spaces.

Yet, engineering programs seldom include training in differential geometry, that 
is, the field of mathematics concerned with smooth manifolds. Moreover, existing 
textbooks on this topic usually align with the interests of mathematicians more than 
with the needs of engineers and applied mathematicians. This creates a significant but 
avoidable barrier to entry for optimizers.

One of my goals in writing this book is to offer a different, if at times unorthodox, 
introduction to differential geometry. Definitions and tools are introduced in a need­
based order for optimization. We start with a restricted setting—that of embedded 
submanifolds of linear spaces—which allows us to define all necessary concepts in 
direct reference to their usual counterparts from linear spaces. This covers a wealth of 
applications.

In what is perhaps the clearest departure from standard exposition, charts and 
atlases are not introduced until quite late. The reason for doing so is twofold: pedagog­
ically, charts and atlases are more abstract than what is needed to work on embedded 
submanifolds; and pragmatically, charts are seldom if ever useful in practice. It would 
be unfortunate to give them center stage.

Of course, charts and atlases are the right tool to provide a unified treatment of 
all smooth manifolds in an intrinsic way. They are introduced eventually, at which 
point it becomes possible to discuss quotient manifolds: a powerful language to 
understand symmetry in optimization. Perhaps this abstraction is necessary to fully 
appreciate the depth of optimization on manifolds as more than just a fancy tool for


