Quantum Mechanics

A Mathematical Introduction

ANDREW J. LARKOSKI SLAC National Accelerator Laboratory

Contents

Preface			<i>page</i> xi			
	Approach					
	Structure of This Book Key Features					
	How	v to Teach With This Book	xiv			
	Acknowledgments					
1	Introduction					
	1.1	Structure of This Book	1			
	1.2	Fundamental Hypothesis of Quantum Mechanics	3			
2	Linear Algebra					
	2.1	Invitation: The Derivative Operator	5			
	2.2	Linearity	6			
	2.3	Matrix Elements	8			
	2.4	Eigenvalues	12			
	2.5	Properties of the Derivative as a Linear Operator	16			
	2.6	Orthonormality of Complex-Valued Vectors	20			
	Exe	rcises	22			
3	Hilbert Space					
	3.1	The Hilbert Space	27			
	3.2	Unitary Operators	29			
	3.3	Hermitian Operators	33			
	3.4	Dirac Notation	36			
	3.5	Position Basis and Continuous-Dimensional Hilbert Spaces	40			
	3.6	The Time Derivative	44			
	3.7	The Born Rule	49			
	Exer	rcises	54			
4	Axioms of Quantum Mechanics and their Consequences					
	4.1	The Schrödinger Equation	58			
	4.2	Time Evolution of Expectation Values	63			
	4.3	The Uncertainty Principle	68			
	4.4	The Density Matrix: A First Look	80			
	Exercises		84			

5	Quar	ntum Mechanical Example: The Infinite Square Well	89	
	5.1	Hamiltonian of the Infinite Square Well	89	
	5.2	Correspondence with Classical Mechanics	98	
	Exe	rcises	103	
6	Quantum Mechanical Example: The Harmonic Oscillator			
	6.1	Representations of the Harmonic Oscillator Hamiltonian	109	
	6.2	Energy Eigenvalues of the Harmonic Oscillator	112	
	6.3	Uncertainty and the Ground State	122	
	6.4	Coherent States	123	
	Exe	rcises	129	
7	Quantum Mechanical Example: The Free Particle			
	7.1	Two Disturbing Properties of Momentum Eigenstates	134	
	7.2	Properties of the Physical Free Particle	136	
	7.3	Scattering Phenomena	139	
	7.4	The S-matrix	151	
	7.5	Three Properties of the S-matrix	154	
	Exer	rcises	165	
8	Rota	tions in Three Dimensions	170	
	8.1	Review of One-Dimensional Transformations	170	
	8.2	Rotations in Two Dimensions in Quantum Mechanics	171	
	8.3	Rotations in Three Dimensions Warm-Up: Two Surprising Properties	175	
	8.4	Unitary Operators for Three-Dimensional Rotations	178	
	8.5	The Angular Momentum Hilbert Space	183	
	8.6	Specifying Representations: The Casimir of Rotations	187	
	8.7	Quantum Numbers and Conservation Laws	193	
	Exer	cises	197	
9	The Hydrogen Atom			
	9.1	The Hamiltonian of the Hydrogen Atom	201	
	9.2	The Ground State of Hydrogen	204	
	9.3	Generating All Bound States: The Laplace-Runge-Lenz Vector	210	
	9.4	Quantizing the Hydrogen Atom	214	
	9.5	Energy Eigenvalues with Spherical Data	223	
	9.6	Hydrogen in the Universe	229	
	Exer	cises	237	
10	Approximation Techniques			
	10.1	Quantum Mechanics Perturbation Theory	241	
	10.2	The Variational Method	247	
	10.3	The Power Method	251	
	10.4	The WKB Approximation	256	
	Exerc	cises	260	

11	The Path Integral		268		
	11.1	Motivation and Interpretation of the Path Integral	268		
	11.2	Derivation of the Path Integral	271		
	11.3	Derivation of the Schrödinger Equation from the Path Integral	278		
	11.4	Calculating the Path Integral	282		
	11.5	Example: The Path Integral of the Harmonic Oscillator	285		
	Exer	cises	294		
12	The D	ensity Matrix	299		
	12.1	Description of a Quantum Ensemble	299		
	12.2	Entropy	305		
	12.3	Some Properties of Entropy	307		
	12.4	Quantum Entanglement	314		
	12.5	Quantum Thermodynamics and the Partition Function	327		
	Exer	cises	331		
13	Why Q	uantum Mechanics?	337		
	13.1	The Hilbert Space as a Complex Vector Space	337		
	13.2	The Measurement Problem	339		
	13.3	Decoherence, or the Quantum-to-Classical Transition	341		
A	Mathem	natics Review	345		
B	Poisson	Brackets in Classical Mechanics	351		
C	Further	Reading	354		
Gl	ossary		356		
Bi	Bibliography				
Inc	Index				