Introduction to Parallel Programming

Subodh Kumar

Contents

Lis	t of F	igures	xiii
Inf	rodu	ction	xvii
	Cor	currency and Parallelism	xvii
	Wh	y Study Parallel Programming	xvii
	Wh	at Is in This Book	xix
1	An Introduction to Parallel Computer Architecture		1
	1.1	Parallel Organization	1
		SISD: Single Instruction, Single Data	2
		SIMD: Single Instruction, Multiple Data	2
		MIMD: Multiple Instruction, Multiple Data	3
		MISD: Multiple Instruction, Single Data	3
	1.2	System Architecture	4
	1.3	CPU Architecture	5
	1.4	Memory and Cache	. 8
	1.5	GPU Architecture	11
	1.6	Interconnect Architecture	13
		Routing	13
		Links	13
		Types and Quality of Networks	14
		Torus Network	16
		Hypercube Network	18
		Cross-Bar Network	19
		Shuffle-Exchange Network	20
		Clos Network	21
		Tree Network	22
		Network Comparison	24
	1.7	Summary	24
2	Parallel Programming Models		31
	2.1	Distributed-Memory Programming Model	32
	2.2	Shared-Memory Programming Model	33
	2.3	Task Graph Model	35
	2.4	Variants of Task Parallelism	37
	2.5	Summary	39

3	Par	allel Performance Analysis	45
	3.1	Simple Parallel Model	46
	3.2	Bulk-Synchronous Parallel Model	47
		BSP Computation Time	48
		BSP Example	49
	3.3	PRAM Model	52
		PRAM Computation Time	55
		PRAM Example	55
	3.4	Parallel Performance Evaluation	57
		Latency and Throughput	57
		Speed-up	58
		Cost	58
		Efficiency	59
		Scalability	59
		Iso-efficiency	60
	3.5	Parallel Work	62
		Brent's Work-Time Scheduling Principle	63
	3.6	Amdahl's Law	63
	3.7	Gustafson's Law	65
	3.8	Karp–Flatt Metric	66
	3.9	Summary	67
4	Syn	chronization and Communication Primitives	75
	4.1	Threads and Processes	75
	4.2	Race Condition and Consistency of State	77
		Sequential Consistency	78
		Causal Consistency	82
		FIFO and Processor Consistency	82
		Weak Consistency	84
		Linearizability	85
	4.3	Synchronization	85
		Synchronization Condition	86
		Protocol Control	86
		Progress	86
		Synchronization Hazards	88
	4.4	Mutual Exclusion	90
		Lock	90 .
		Peterson's Algorithm	91

	Bakery Algorithm	94
	Compare and Swap	95
	Transactional Memory	96
	Barrier and Consensus	97
4.5	Communication	99
	Point-to-Point Communication	99
	RPC	102
	Collective Communication	102
4.6	Summary	104
Par	allel Program Design	111
5.1	Design Steps	112
	Granularity	112
	Communication	113
	Synchronization	114
	Load Balance	115
5.2	Task Decomposition	115
	Domain Decomposition	116
	Functional Decomposition	120
	Task Graph Metrics	123
5.3	Task Execution	124
	Preliminary Task Mapping	125
	Task Scheduling Framework	126
	Centralized Push Scheduling Strategy	127
	Distributed Push Scheduling	129
	Pull Scheduling	129
5.4	Input/Output	130
5.5	Debugging and Profiling	132
5.6	Summary	133
Mie	ddleware: The Practice of Parallel Programming	139
6.1	OpenMP	139
	Preliminaries	140
	OpenMP Thread Creation	140
	OpenMP Memory Model	141
	OpenMP Reduction	143
	OpenMP Synchronization	144
	Sharing a Loop's Work	147
	Other Work-Sharing Pragmas	150

	SIMD Pragma	151
	Tasks	153
	6.2 MPI	155
	MPI Send and Receive	156
	Message-Passing Synchronization	158
	MPI Data Types	161
	MPI Collective Communication	164
	MPI Barrier	167
	MPI Reduction	167
	One-Sided Communication	169
	MPI File IO	173
	MPI Groups and Communicators	176
	MPI Dynamic Parallelism	177
	MPI Process Topology	178
	6.3 Chapel	180
	Partitioned Global Address Space	180
	Chapel Tasks	181
	Chapel Variable Scope	183
	6.4 Map-Reduce	184
	Parallel Implementation	185
	Hadoop	186
	6.5 GPU Programming	188
	OpenMP GPU Off-Load	188
	Data and Function on Device	191
	Thread Blocks in OpenMP	193
	CUDA	194
	CUDA Programming Model	195
	CPU–GPU Memory Transfer	197
	Concurrent Kernels	198
	CUDA Synchronization	199
	CUDA Shared Memory	202
	CUDA Parallel Memory Access	203
	False Sharing	206
	6.6 Summary	207
7	Parallel Algorithms and Techniques	211
	7.1 Divide and Conquer: Prefix-Sum	212
	Parallel Prefix-Sum: Method 1	214

	Parallel Prefix-Sum: Method 2	215
	Parallel Prefix-Sum: Method 3	215
7.2	Divide and Conquer: Merge Two Sorted Lists	217
	Parallel Merge: Method 1	218
	Parallel Merge: Method 2	219
	Parallel Merge: Method 3	222
	Parallel Merge: Method 4	226
7.3	Accelerated Cascading: Find Minima	227
7.4	Recursive Doubling: List Ranking	230
7.5	Recursive Doubling: Euler Tour	231
7.6	Recursive Doubling: Connected Components	233
7.7	Pipelining: Merge-Sort	238
	Basic Merge-Sort	238
	Pipelined Merges	240
	4-Cover Property Analysis	245
	Merge Operation per Tick	248
7.8	Application of Prefix-Sum: Radix-Sort	249
7.9	Exploiting Parallelism: Quick-Sort	250
7.10) Fixing Processor Count: Sample-Sort	254
7.11	1 Exploiting Parallelism: Minimum Spanning Tree	257
	Parallel Priority Queue	260
	MST with Parallel Priority Queue	263
7.12	2 Summary	264
Bibliography		269
Index		277

Figures

1.1	Shared-memory vs. distributed-memory architecture	4
1.2	Parallel computing cluster	4
1.3	Computing system	5
1.4	Computing core	6
1.5	Cache coherence	9
1.6	GPU architecture	12
1.7	Completely connected network	14
1.8	A bus network	14
1.9	Ring network	16
1.10	$4 \times 4 \times 4$ 3D Mesh network	17
1.11	A 4×4 2D torus	17
1.12	A 1D torus layout with no long links	18
1.13	Hypercube network	19
1.14	Cross-bar	19
1.15	Omega network	20
1.16	Butterfly network	21
1.17	A Clos network	22
1.18	Tree network	22
1.19	Fat tree network	23
1.20	Folded Clos network	23
1.21	Clos = Fat tree network	24
2.1	Distributed-memory programming model	32
2.2	Shared-memory programming model	34
2.3	Task graph	36
2.4	Data parallelism	37
2.5	Task pipeline	38
2.6	Example task graphs	42
3.1	BSP computation model	48
3.2	Binary tree-like computation tree	51
3.3	PRAM computation model	54
3.4	Efficiency curve: speed-up vs. processor count	60
3.5	Maximum speed-up possible with different processor counts	65
3.6	Maximum speed-up possible by scaling problem size with processor count	66

7.14	Compute Ranklist(list1, list2) given Ranklist(list1, X) and Ranklist(X, list2)	245
7.15	Merging using cover	247
7.16	Partition a list	251
7.17	CRCW Quick-sort	253
7.18	Sampling a list for sample-sort	256
7.19	Minimum spanning tree of a weighted graph	257
7.20	Examples of Binomial trees of rank 0 to rank 4	2 61

n