A Prelude to Quantum Field Theory

JOHN DONOGHUE LORENZO SORBO

Contents

	Pre	ix				
CHAPTER 1	Wh	A RETER A				
	1.1	A successful framework	2			
	1.2	A universal framework	3			
CHAPTER 2	Qua	Quanta				
	2.1					
		waves: Phonons	4			
	2.2	From quantum mechanics to Quantum Field Theory	7			
	2.3	Creation operators and the Hamiltonian	8			
	2.4	States filled with quanta	11			
	2.5	Connection with normal modes	14			
CHAPTER 3	Dev	16				
	3.1	Quantum mechanics in field theory notation	16			
	3.2	The infinite-box limit	18			
	3.3	Relativistic notation, $\hbar = c = 1$, and				
		dimensional analysis	19			
	3.4	Action principle in general	21			
	3.5	Energy and momentum	22			
	3.6	Zero-point energy	24			
	3.7	Noether's theorem	25			
	3.8	The relativistic real scalar field	27			
	3.9	The complex scalar field and antiparticles	28			
	3.10	The nonrelativistic limit	30			
	3.11	Photons	31			
	3.12	Fermions—Preliminary	33			
	3.13	Why equal-time commutators?	33			
CHAPTER 4	Inte	36				
	4.1	Example: Phonons again	36			
	4.2	Taking matrix elements	38			
	4.3	Interactions of scalar fields	39			

	4.4	Dimensional analysis with fields	40
	4.5	Some transitions	42
	4.6	The Feynman propagator	44
CHAPTER 5	Fevi	nman rules	49
010/4 12/10	5.1	The time-development operator	49
	5.2	Tree diagrams	52
	5.3	Wick's theorem	54
	5.4	Loops	55
	5.5	Getting rid of disconnected diagrams	59
	5.6	The Feynman rules	60
	5.7	Quantum Electrodynamics	64
	5.8	Relation with old-fashioned perturbation theory	66
CHAPTER 6	Cal	culating	71
	6.1		71
	6.2	Some examples	75
		6.2.1 Decay rate	75
		6.2.2 Cross section	76
		6.2.3 Coulomb scattering in scalar Quantum	
		Electrodynamics	76
		6.2.4 Coulomb potential	77
	6.3	Symmetry breaking	78
	6.4	Example: Higgs mechanism and the Meissner effect	et 83
CHAPTER 7	Intr	86	
	7.1	Measurement	86
	7.2	Importance of the uncertainty principle	90
	7.3	Divergences	91
	7.4	Techniques	94
	7.5	The renormalization group	96
	7.6	Power counting and renormalization	97
	7.7	Effective field theory in brief	99
CHAPTER 8	Pat	h Integrals	104
	8.1	Path integrals in quantum mechanics	104
	8.2	Path integrals for Quantum Field Theory	107
	8.3	The generating functional—Feynman rules again	111
	8.4	Connection to statistical physics	116
CHAPTER 9	As	hort guide to the rest of the story	119
	9.1	Quantizing other fields	119
		9.1.1 The Dirac field	120
		9.1.2 Gauge bosons	124
	9.2	Advanced techniques	127
	9.3	Anomalies	128

		Contents	Vi
	9.4 Many body field theory	128	
	9.5 Nonperturbative physics	130	
	9.6 Bogolyubov coefficients	132	
APPENDIX	Calculating loop integrals	135	
	A.1 Basic techniques	135	
	A.2 Locality	139	
	A.3 Unitarity	140	
	A.4 Passarino-Veltman reduction	141	
	Bibliography	143	
	Index	145	