Physics of Binary Star Evolution

From Stars to X-ray Binaries and Gravitational Wave Sources

Thomas M. Tauris Edward P. J. van den Heuvel

PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD

Contents

Pr			xi
1	Intro	duction: The Role of Binary Star Evolution in Astrophysics	1
2	Histo	orical Notes on Binary Star Discoveries	10
	2.1	Visual Binaries and the Universal Validity of the Laws of Physics	10
	2.2	Astrometric Binaries	11
	2.3	Spectroscopic Binaries	14
	2.4	Eclipsing Binaries	15
	2.5	The Discovery of the Binary Nature of Novae and Other Cataclysmic Variables	17
	2.6	The Discovery of the Binary Nature of the Brightest X-ray Sources in the Sky	20
	2.7	Centaurus X-3: Discovery of the First Neutron Star X-ray Binary	21
	2.8	Cygnus X-1: Discovery of the First Black Hole X-ray Binary	22
	2.9	The Discovery of the Existence of Double NSs and Double BHs	25
	2.10	The Discovery of Millisecond Radio Pulsars: Remnants of LMXBs	26
	2.11 2.12	Type Ia, Ib, and Ic SNe: Results of the Evolution of Binary Systems Binary Nature of Blue Stragglers, Barium Stars, and Peculiar	27
		Post-AGB Stars	29
		Exercises	31
3	Orbit	ts and Masses of Spectroscopic Binaries	33
	3.1	Some Basics about Binary Orbits	33
	3.2	Orbit Determination	36
	3.3	Determination of Stellar Masses	41
	3.4	Masses of Unevolved Main-sequence Stars	42
	3.5	The Most Massive Stars	44
	3.6	Falsification of Radial Velocity Curves	46
	3.7	The Incidence of Interacting Binaries and Their Orbital Distribu- tions and Masses	E 1
		Exercises	51 57
4	Mass	Transfer and Mass Loss in Binary Systems	59
	4.1	Roche Equipotentials	59
	4.2	Limitations in the Concept of Roche Equipotentials	63

	4.3	Orbital Changes due to Mass Transfer and Mass Loss	
		in Binary Systems	65
	4.4	Observational Examples	83
	4.5	Basic Physics of Mass Transfer via L_1	88
	4.6	Accretion Disks	98
	4.7	Tidal Evolution in Binary Systems	109
	4.8	Common Envelopes	115
	4.9	Eddington Accretion Limit	131
		Exercises	134
5	Obs	erved Binaries with Non-degenerate or White Dwarf	
		ponents	139
	5.1	Introduction	139
	5.2	Unevolved Systems	142
	5.3	Evolved Systems with Non-degenerative Components	143
	5.4	Systems with One or Two White Dwarfs	152
		Exercises	167
6		erved Binaries with Accreting Neutron Stars and Black Holes:	
	X-ra	y Binaries	168
	6.1	Discovery of NS and BH Character of Bright Galactic	
		X-ray Sources	168
	6.2	Two Types of Persistent Strong X-ray Sources:	
		HMXBs and LMXBs	176
	6.3	HMXBs and LMXBs vs. IMXBs	180
	6.4	Determinations of NS Masses in X-ray Binaries	188
	6.5	BH X-ray Binaries	191
	6.6	Binaries and Triples with Non-interacting BHs	206
		Exercises	209
7		erved Properties of X-ray Binaries in More Detail	213
	7.1	High-mass X-ray Binaries in More Detail	213
	7.2	Stellar Wind Accretion in More Detail	227
	7.3	Spin Evolution of Neutron Stars	232
	7.4	The Corbet Diagram for Pulsating HMXBs	243
	7.5	Orbital Changes due to Torques by Stellar Wind Accretion,	
		Mass Loss, and Tides	245
	7.6	Measuring BH Spins in X-ray Binaries	245
	7.7	Ultra-luminous X-ray Binaries	252
	7.8	Low-mass X-ray Binaries in More Detail Exercises	258 270
8	Evol	ution of Single Stars	271
Ŭ	8.1	Overview of the Evolution of Single Stars	271
	8.2	Final Evolution and Core Collapse of Stars More Massive	4/1
	0.2	than 8 M_{\odot}	299
			4//

	8.3	Evolution of Helium Stars	315
		Exercises	325
9	Stella	r Evolution in Binaries	326
	9.1	Historical Introduction: Importance of Mass Transfer	326
	9.2	Evolution of the Stellar Radius and Cases of Mass Transfer	327
	9.3	RLO: Reasons for Large-scale Mass Transfer and Conditions	
		for Stability of the Transfer	334
	9.4	Results of Calculations of Binary Evolution with	
		Conservative Mass Transfer	340
	9.5	Examples of Non-conservative Mass Transfer	353
	9.6	Comparison of Case B Results with Some Observed Types	
		of Systems	360
	9.7	Differences in Final Remnants of Mass-transfer Binaries and	
		Single Stars	366
	9.8	Slowly Rotating Magnetic Main-sequence Stars: The Products	
		of Mergers?	371
		Exercises	374
10	Form	ation and Evolution of High-mass X-ray Binaries	376
	10.1	Introduction: HMXBs are Normal Products of Massive Binary	
		Star Evolution	376
	10.2	Formation of Supergiant HMXBs	376
	10.3	Formation of B-emission (Be)/X-ray Binaries	379
	10.4	WR Binaries, HMXBs, and Runaway Stars	386
	10.5	Stability of Mass Transfer in HMXBs	393
	10.6	The X-ray Lifetime and Formation Rate of the Blue	
		Supergiant HMXBs	395
	10.7	Highly Non-conservative Evolution and Formation of Very	
		Close Relativistic Binaries	403
	10.8	Formation Models of HMXBs Different from Conservative	(0.0
	10.0	Case B Evolution	408
	10.9	The Lower Mass Limit of Binary Stars for Terminating	
	10.10	as a BH	411
	10.10	Final Evolution of BH-HMXBs: Two Formation Channels for	41.4
	10.11	Double BHs	414
		Final Evolution of Wide-orbit BH-HMXBs via CE Evolution	415
	10.12	Final Evolution of Relatively Close-orbit BH-HMXBs via	410
	10.12	Stable RLO References of the DNS Formation Madel, Case BD DLO is	419
	10.13	Refinement of the DNS Formation Model: Case BB RLO in Post HMXP Systems	400
		Post-HMXB Systems Exercises	423
		EXCLUSES	431
11		ation and Evolution of Low-mass X-ray Binaries	433
	11.1	Origin of LMXBs with Neutron Stars	433
	11.2	Origin of LMXBs with Black Holes	449

	11.3	Mechanisms Driving Mass Transfer in Close-orbit LMXBs		
		and CVs	450	
	11.4	Formation and Evolution of UCXBs	464	
	11.5	Mechanisms Driving Mass Transfer in Wide-orbit LMXBs and		
		Symbiotic Binaries	470	
	11.6	Stability of Mass Transfer in Intermediate-Mass and High-Mass		
		X-ray Binaries	475	
		Exercises	477	
12	Dynamical Formation of Compact Star Binaries in Dense			
	Star (Clusters	480	
	12.1	Introduction	480	
	12.2	Observed Compact Object Binaries in Globular Clusters:		
		X-ray Binaries and Radio Pulsars	482	
	12.3	Possible Formation Processes of NS Binaries in Globular Clusters	483	
	12.4	Dynamical Formation of Double BHs	489	
	12.5	Compact Objects in Globular Clusters Constrain Birth Kicks	492	
13	Supe	rnovae in Binaries	495	
	13.1	Introduction	495	
	13.2	Supernovae of Type Ia	49 8	
	13.3	Stripped-Envelope Core-Collapse SNe	513	
	13.4	Electron-capture SNe in Single and Binary Stars	518	
	13.5	Ultra-Stripped Supernovae	523	
	13.6	Comparison between Theory and Observations of SNe Ib and Ic	529	
	13.7	Supernova Kicks	531	
	13.8	Kinematic Impacts on Post-SN Binaries	541	
		Exercises	556	
14		y and Millisecond Pulsars	560	
	14.1	Introduction to Radio Pulsars	561	
	14.2	To Be Recycled or Not to Be Recycled	571	
	14.3	MSPs with He WD or Sub-stellar		
		Dwarf Companions-Evolution from LMXBs	578	
	14.4	MSPs with CO WD Companions–Evolution from IMXBs	591	
	14.5	Formation of MSPs via Accretion-induced Collapse	595	
	14.6	Recycling of Pulsars	597	
	14.7	Masses of Binary Neutron Stars	618	
	14.8	Pulsar Kicks	635	
	14.9	Formation of Double Neutron Star Systems	637	
	1 117	Exercises	648	
15	Gravi	tational Waves from Binary Compact Objects	652	
-	15.1	The Evidence of GWs prior to LIGO	655	
	15.2	GW Luminosity and Merger Timescale	658	

	15.3	Observations of GW Signals from Binaries	661
	15.4	Galactic Merger Rates of Neutron Star/Black Hole Binaries	664
	15.5	Formation of Double Black Hole Binaries	667
	15.6	Properties of GW Sources Detected so Far	678
	15.7	Empirical Merger Rates	694
	15.8	BH Spins-Expectations and Observations	696
	15.9	Anticipated Other Sources to be Detected in the GW Era	706
	15.10	GW Follow-up Multimessenger Astronomy	712
	15.11	Cosmological Implications	718
	15.12	LISA Sources	718
	15.13	LISA Sensitivity Curve and Source Strain	730
		Exercises	736
16	Binar	y Population Synthesis and Statistics	739
	16.1	Introduction	739
	16.2	Methodology of Population Synthesis	741
	16.3	Empirical vs. Binary Population Synthesis-Based	
		Estimates of Double Compact Object Merger Rates	747
	16.4	Some History of Early Binary Population Synthesis:	
		Evolution of Open Star Clusters with Binaries	753
Ack	nowled	gments	761
Ans	swers to	Exercises	765
List	t of Acr	onyms	767
Ref	erences		771
Index		843	