Fundamentals of Solar Radiation

Lucien Wald

MINES PARISTECH, FRANCE

CRC Press is an imprint of the Taylor & Francis Group, an Informa business

Contents

	List of figures	ir
	List of tables	ı. viv
	Preface	л <i>і</i> л ××і
	Acknowledgments	xxix
1	The definition of time and different time systems	1
	1.1 Reminder – geocentric and geographic coordinates – angle of incidence 2	
	1.2 Orbit of the Earth around the sun – distance between the sun and the Earth	5
	1.3 Solar declination 7	
	1.4 Definitions of time: from year to second 9	
	1.4.1 Year – astronomical season – month – week 10	
	1.4.2 Day – hour – minute – second 12	
	1.5 Mean solar time – true solar time 13	
	1.6 Coordinated universal time and legal time 15	
	1.6.1 Coordinated universal time (UTC) 15	
	1.6.2 Legal time – civil time – time zone 16	
	1.6.3 To sum up: converting the legal time to the true solar time 18	
2	The course of the sun over an observer on the ground	19
	2.1 Position of the sun seen by an observer on the ground 21	
	2.1.1 Solar zenithal angle – solar elevation – azimuth 22	
	2.1.2 Direction of the sun in the case of an inclined plane 25	
	2.2 Solar zenithal angles at solar noon during a year 26	
	2.3 Times of sunrise and sunset 27	
	2.4 Davtime – davlength 30	
	2.5 Solar angles during equinoxes and solstices 31	
	2.6 Effective solar angles 36	
	2.6.1 Methods for computing effective angles 37	
	2.6.2 How to practically use one of these methods 38	
~		40
5	Solar radiation incident at the top of the atmosphere	40
	3.1 Radiance – irradiance – irradiation 41	
	3.1.1 Kadiance 41	

- 3.1.2 Irradiance 42
- 3.1.3 Irradiation radiant exposure 43
- 3.1.4 Converting irradiance to irradiation and vice versa 44
- 3.2 Solar activity extraterrestrial radiation 45
- 3.3 Extraterrestrial radiation received on a horizontal plane 46
 - 3.3.1 Typical values of hourly extraterrestrial total radiation 47
 - 3.3.2 Daily extraterrestrial radiation 51
- 3.4 Extraterrestrial radiation received on an inclined plane 53
- 3.5 Spectral distribution of the extraterrestrial radiation 56

4 Radiative transfer in the atmosphere

- 4.1 Absorption by gases in the atmosphere 61
- 4.2 Scattering overview case of the air molecules 64
- 4.3 Attenuation extinction 67
- 4.4 Quantities related to the attenuation 67
 - 4.4.1 Air mass 67
 - 4.4.2 Optical depth optical thickness 68
 - 4.4.3 Transmittance 69
 - 4.4.4 Linke turbidity factor 70
 - 4.4.5 Visibility 71
- 4.5 Effects of aerosols on radiation 72
- 4.6 Effects of clouds on radiation 76
- 4.7 The paths of the sun rays in the atmosphere 78
- 4.8 Summary of contributions of atmospheric constituents to attenuation of radiation 80

5 Ground reflection

- 5.1 Reflection factor its spectral variations 83
 - 5.1.1 Reflection factor 83
 - 5.1.2 Examples of spectra of reflection factor 85
- 5.2 Bidirectional reflectance distribution function (BRDF) 86
- 5.3 Albedo 88

6 Solar radiation received at ground level

- 6.1 Components of the solar radiation at ground level 96
 - 6.1.1 Direct, diffuse, and reflected components global radiation 96
 - 6.1.2 Several definitions of the direct component 98
 - 6.1.3 Diffuse fraction direct fraction 100
- 6.2 Clearness index 100
 - 6.2.1 Definition 100
 - 6.2.2 An example of 15-min clearness indices 102
 - 6.2.3 An example of monthly clearness indices 104
- 6.3 Clear-sky index 106
- 6.4 The prominent role of clouds 108

95

60

82

	6.5 6.6 6.7	6.4.1 An example of hourly radiation over the North Atlantic Ocean 108 6.4.2 Map of a multi-year average of the total solar irradiance at ground Sunshine duration 112 The most important variables for the solar radiation at ground 112 Decoupling the effects of clear atmosphere and clouds 114	109
7	Spe 7.1 7.2	 ectral distribution of the solar radiation at ground Spectral distribution of the irradiance in a cloud-free atmosphere 119 7.1.1 Influence of the turbidity 119 7.1.2 Spectral distribution of the direct and diffuse components 121 7.1.3 Influence of the solar zenithal angle 123 7.1.4 Typical irradiances integrated over some spectral intervals in a clear atmosphere 124 Spectral distribution of the irradiance in a cloudy atmosphere 126 7.2.1 Influence of the solar zenithal angle 128 7.2.2 Influence of the solar zenithal angle 128 7.2.3 Typical irradiances integrated over spectral intervals in cloudy conditions 129 	117
8	Var 8.1 8.2 8.3 8.4 8.5	iability – implications for estimating radiation Time and space scales 133 Random nature of meteorological variables – ergodicity 136 Fluctuations around the average – small-scale variability 139 Measurement – sampling 144 Sampling theorem – detection of the smallest details 147 8.5.1 Sampling theorem 147 8.5.2 What are the smallest observable details in a series of measurements?	132 148
9	Gro 9.1 9.2 9.3 9.4	 aund-based instruments for measuring solar radiation at ground Common ground-based instruments 152 9.1.1 Thermopiles and photodiodes – calibration and classes of instruments 9.1.2 Pyranometer – pyrheliometer – pyranometer with a shadow ring or ball 153 9.1.3 Other instruments measuring global radiation and its diffuse component simultaneously 155 Typical uncertainties of pyranometers and pyrheliometers 157 Incomplete coverage in both space and time by stations 159 Calculation of daily, monthly, and yearly sums and averages 162 9.4.1 Ideal case of a complete time series of measurements 162 9.4.2 Calculation of climate normals in meteorology 164 9.4.4 Overview of the completion of a time series 167 	150 152
10	Oth 10.1	er means for estimating solar radiation at surface Meteorological analyses and reanalyses 170	169

- 10.2 Images acquired by Earth observing satellites 172
 - 10.2.1 Multispectral imagery 173
 - 10.2.2 Orbits of satellites 174
 - 10.2.3 Overview of the methods for estimating the solar radiation 176
- 10.3 Estimate using nearby ground stations 179
- 10.4 Usual approach to estimate components from the only knowledge of global radiation 181
- 10.5 Methods using other meteorological variables 183
 - 10.5.1 Ångström's relationship between irradiation and sunshine duration 183
 - 10.5.2 Relationships between the total radiation and that in a given spectral range 185
 - 10.5.3 Estimate using other meteorological variables 186

11 Control of the plausibility of measurements

- 11.1 Objective of the control of plausibility 190
- 11.2 How to control the plausibility of measurements 193
- 11.3 Checking metadata: an overview 196
- 11.4 Checking metadata: geographic location of the station 197
- 11.5 Checking metadata: time system and time stamp 198
 - 11.5.1 Overview of the most common problems 198
 - 11.5.2 Some graphs for the visual inspection of the time-related problems 201
 - 11.5.3 Benefit in using the hourly extraterrestrial irradiation 202
- 11.6 Checking metadata: checking the measured quantity and its unit 203

12 Visual and automated procedures

- 12.1 The principle of visual inspection 208
- 12.2 Visual inspection of daily measurements 208
 12.2.1 Daily and monthly total irradiation 209
 12.2.2 An example of visual control of daily spectral values 213
- 12.3 Visual inspection of hourly and intra-hourly values 214
- 12.4 Two-dimensional representation of hourly and intra-hourly values 217
- 12.5 Automatic procedures 222
 - 12.5.1 Hourly and intra-hourly measurements 224
 - 12.5.2 Daily measurements 225
 - 12.5.3 Monthly measurements 226
 - 12.5.4 Spectral radiation measurements 228

Index

231

Figures

1.1	Definition of the angle of incidence θ . (a) The general case of an	
1 0	inclined plane; and (b) the case of a horizontal plane.	4
1.2	Schematic view showing the orbit of the Earth around the sun.	
	The Earth is represented in section with the equatorial plane and	
	its axis of rotation. The distance between the sun and the Earth is	
	given for the two extreme points and the two points for which it is	_
	equal to I au, with the corresponding dates.	5
1.3	Distance between the sun and the Earth as a function of the	
	number of the day in the year.	6
1.4	Diagram showing the cases where the difference in distance	
	between the sun and each pole is the greatest. (a) The North Pole	
	is the closest to the sun, while it is the South Pole in (b). The Earth	
	is drawn in cross section with the equatorial plane and its rotation	
	axis. The angle δ is the solar declination. The star indicates the	
	point of latitude 45° on the sphere.	7
1.5	Schematic view of the change in solar declination δ during a	
	revolution of the Earth around the sun. The Earth is drawn in	
	cross section with the equatorial plane and its rotation axis. δ is	
	given for both solstices and equinoxes with the corresponding	
	dates. The dashed line divides the part of the orbit where the	
	declination is positive from that where it is negative.	8
1.6	Solar declination (in radian and degree) during the year 2019.	9
1.7	Equation of time $(t_{TST}-t_{MST})$ in h (left axis) and min (right axis) as	
	a function of the day in the year.	14
2.1	Schematic view of the course of the sun in the sky for an observer	
	located at P in the northern hemisphere.	21
2.2	Hour angle ω of the sun for an observer located at P in the	
	northern hemisphere. $\omega_{sunrise}$ is the hour angle of sunrise, and	
	ω_{sunset} is that of sunset ($\omega_{\text{sunset}} = -\omega_{\text{sunrise}}$).	22
2.3	Solar angles depicting the course of the sun in the sky for an	
	observer located at P in the northern hemisphere. θ_{s} is the solar	
	zenithal angle, γ_{S} is the solar elevation and ψ_{S} is the azimuth.	
	N, E, S and W identify the cardinal points north, east, south.	
	and west, respectively.	22

2.4	Angle θ under which the sun is seen relative to the normal to an inclined plane. The inclination and azimuth of the plane are β and	
	a, respectively.	25
2.5	Solar zenithal angles and elevation angles at solar noon during a vear at latitudes -90° -45° -23 45° 0° +23 45° $+45^{\circ}$ and $+90^{\circ}$.	26
2.6	Time at sunrise in TST, MST, and UTC during the year, at	20
	longitude 5° at two latitudes: equator and 45°.	28
2.7	Astronomical daytime S_0 as a function of the number of the day in	20
28	the year at several latitudes. Solar repithal angle $A_{-}(a)$ and azimuth $\Psi_{-}(b)$ during days of	30
2.0	solstices and equinoxes at equator. Curves are not drawn for hours	
	when the sun is below the horizon ($\theta_S > 90^\circ$).	32
2.9	Solar zenithal angle θ_S (a) and azimuth Ψ_S (b) during days of	
	solstices and equinoxes at latitudes -11.725° and 11.725°. Curves	
2 10	are not drawn for hours when the sun is below the horizon ($\theta_S > 90^\circ$).	32
2.10	Solar zeminar angle $\theta_S(a)$ and azimuth $\Psi_S(b)$ during days of solstices and equipoxes at latitudes -23.45° and 23.45° Curves are	
	not drawn for hours when the sun is below the horizon ($\theta_{s} > 90^{\circ}$).	33
2.11	Solar zenithal angle θ_S (a) and azimuth Ψ_S (b) during days of	
	solstices and equinoxes at latitudes -45° and 45°. Curves are not	
	drawn for hours when the sun is below the horizon ($\theta_S > 90^\circ$).	33
2.12	Solar zenithal angle θ_S (a) and azimuth Ψ_S (b) during days of	
	solutions and equinoxes at latitudes -00.55° and 00.55° (polar circles). Curves are not drawn for hours when the sun is below the	
	horizon ($\theta_{\rm S} > 90^{\circ}$).	34
2.13	Solar zenithal angle θ_S during days of solstices and equinoxes at	
	poles. Curves are not drawn for hours when the sun is below the	
	horizon ($\theta_S > 90^\circ$).	34
3.1	Definition of the radiance.	42
3.2	Annual profile of the extraterrestrial irradiance E_{0N} received by a plane always normal to the sup rays. The annual average is 1361 W m ⁻²	17
3.3	Daily profiles of the extraterrestrial total irradiance and	4/
	irradiation received during 1 h on an horizontal plane, at several	
	latitudes, during the days of equinoxes (left) and solstices of June	
	(center) and December (right).	48
3.4	Annual profile of the extraterrestrial total irradiance and	
	at various latitudes	50
3.5	Annual profile of the extraterrestrial total irradiance and	50
	irradiation received on a horizontal plane during a day at several	
	latitudes.	52
3.6	Map of the annual average of the extraterrestrial total irradiance	
	received on a norizontal plane and the corresponding irradiation.	52
37	Annual profile of the daily mean of the extraterrestrial total	33
5.1	irradiance at latitude 45° received by a plane (i) horizontal.	
	(ii) inclined at 45° facing south, and (iii) vertical facing south.	56

3.8	Typical distribution of the extraterrestrial spectral irradiance	
	$E_{0N}(\lambda)$ received on a plane at normal incidence between 0 and 4000 nm.	57
3.9	Typical distribution of the extraterrestrial spectral irradiance	- 0
	$E_{0N}(\lambda)$ received on a plane at normal incidence between 200 and 1500 nm.	58
3.10	Typical distribution of the extraterrestrial spectral irradiance	
	$E_0(\lambda)$ received on a horizontal plane between 200 and 1500 nm for	
	three solar zenithal angles: 0°, 30°, and 60°.	59
4.1	Typical spectral distribution of the absorption coefficient for	
	ozone between 250 and 700 nm.	62
4.2	Example of spectral distribution of the fraction of the solar flux	
	transmitted by a moderately dry and clean atmosphere, between	
	250 and 4000 nm. λ is the wavelength. O ₃ , ozone; O ₂ , dioxygen;	~
	H_2O , water vapor; CO_2 , carbon dioxide; CH_4 , methane.	63
4.3	Schematic view of a possible scattering pattern in the case where	
	the scattering body (small black circle) is much smaller than the	
	wavelength of the incident radiation shown by the solid arrow.	64
4.4	Schematic view of possible scattering patterns in the case where	
	the size of the scattering body (small black circle) is comparable	
	to or slightly greater than the wavelength of the incident radiation	
	shown by the solid arrow.	65
4.5	Illustration of multiple scattering within an atmospheric column.	66
4.6	Typical monthly values of the Linke turbidity factor at several	
	locations. (Source: SoDa Service (www.soda-pro.com).)	Л
4.7	Aerosol optical depth at 550nm every 3h during the year 2019	
	at Cuzco and Nazca, estimated by the Copernicus Atmosphere	50
	Monitoring Service (CAMS). (Source: SoDa Service (www.soda-pro.com).)	73
4.8	Aerosol optical depth at 550 nm every 3 h during the year 2019 at	
	Beijing and Mexico City estimated by the CAMS. (Source: SoDa	-
4.0	Service (www.soda-pro.com).)	15
4.9	Aerosol optical depth at 550 nm every 3 h during the year 2019 at	
	Carpentras and Bondville, estimated by the CAMS. (Source: SoDa	-
	Service (www.soda-pro.com).)	15
4.10	Aerosol optical depths at 550 and 1240 nm every 3h at Carpentras	
	in April 2019 estimated by the CAMS. (Source: SoDa Service	70
	(www.soda-pro.com).)	/6
4.11	Schematic view of different paths of the downwelling solar rays. (a)	
	Solar rays do not reach the ground. (b) Solar rays reaching the flat	70
	collector are parallel and seem to come from the direction of the sun.	79
4.12	Schematic view of the different paths of the downwelling solar	
	rays received by a flat collector at ground, showing various	70
	contributions to the diffuse component of the radiation at ground.	/9
5.1	Schematic view of the reflection on the I hartar Lake and	
	surroundings and the contribution of the ground to the diffuse	
c e	component.	83
5.2	Diagram illustrating the reflection. I he incident flux arrives from the	
	direction of illumination (θ, ψ) . It can be reflected in several directions,	04
	including the direction (θ', ψ'), called here observation direction.	84

5.3	Examples of reflectance spectra between 350 and 2500 nm for concrete, limestone, wet beach sand and dry playa mud. Graphs made from spectra kindly provided by the federal agency USGS of	
5.4	the United States. Examples of reflectance spectra between 350 and 2500 nm for a	86
	few types of grass and trees. Graphs made from spectra kindly provided by the federal agency USGS.	87
5.5	Maps of the parameter f_{iso} describing the isotropic part of the bidirectional reflectance distribution function in Southeast	
	Asia and Australia. Upper left: A grid every 30° in latitude and longitude is superimposed. Drawn from the data set kindly	
5 (provided by Mines ParisTech of France.	89
5.0	the bidirectional reflectance distribution function in North	
	America. Upper left: A grid every 30° in latitude and longitude is	
	ParisTech of France.	89
5.7	Maps of the parameter f_{iso} describing the isotropic part of the bidirectional reflectance distribution function in South	
	America. Upper left: A grid every 30° in latitude and longitude is	
	superimposed. Drawn from the data set kindly provided by Mines ParisTech of France	90
5.8	Maps of the parameter f_{iso} describing the isotropic part of the	70
	left: A grid every 30° in latitude and longitude is superimposed.	
5.0	Drawn from the data set kindly provided by Mines ParisTech of France.	91
5.9	bidirectional reflectance distribution function in Asia. Upper left:	
	A grid every 30° in latitude and longitude is superimposed. Drawn from the data set kindly provided by Mines ParisTech of France	92
5.10	Maps of the parameter f_{iso} describing the isotropic part of the)2
	bidirectional reflectance distribution function in Europe. Upper left: A grid every 30° in latitude and longitude is superimposed.	
(1)	Drawn from the data set kindly provided by Mines ParisTech of France.	92
0.1	components of the radiation received by an inclined plane at ground	
	whose inclination is β . θ_S is the solar zenithal angle, and θ is the angle formed by the direction of the sun and the normal to the plane	07
6.2	Daily profiles of the 15-min average of total irradiance received	51
	on a horizontal plane at ground level, for the site of latitude 50° and longitude -20°, for 4 days in 2005; 01-10, 04-10, 07-10.	
	and 10-10. Three profiles of 15-min irradiances are plotted: the	
	actual one, the one assuming a cloudless sky (clear sky), and the extraterrestrial one. (Source of data: HelioClim-3 database and	
62	McClear clear-sky model, available at SoDa Service (soda-pro.com).)	103
0.5	and longitude -20° , for 4 days in 2005: 01-10, 04-10, 07-10 and 10-10.	

Two profiles of clearness index are plotted: the actual one and the one assuming a cloudless sky (clear sky). (Source of data: HelioClim-3 database and McClear clear-sky model, available at SoDa Service (soda-pro.com).) 103 Yearly profile of monthly averages of total irradiance received on 6.4 a horizontal plane at ground level during the year 2006 at three sites of longitude 0° and latitudes 0°, 30°, and 60°, respectively. Two profiles are plotted: the actual one and the one assuming a cloudless sky (clear sky). There are not enough data during January, November, and December at 60° to obtain a reliable average. (Source of data: HelioClim-3 database and McClear clear-sky model, available at SoDa Service (soda-pro.com).) 104 6.5 Yearly profile of monthly clearness index during the year 2006 at three sites of longitude 0° and latitudes 0°, 30°, and 60°, respectively. Two profiles are plotted: the actual one and the one assuming a cloudless sky (clear sky). There are not enough data during January, November, and December at 60° to obtain a reliable clearness index. (Source of data: HelioClim-3 database and McClear clear-sky model, available at SoDa Service (soda-pro.com).) 105 Daily profiles of the 15-min clear-sky index at the site of latitude 6.6 50° and longitude -20°, for 4 days in 2005: 01-10, 04-10, 07-10, and 10-10. The clear-sky index in cloudless (clear-sky) conditions is equal to 1 by definition. (Source of data: HelioClim-3 database and McClear clear-sky model, available at SoDa Service (soda-pro.com).) 107 Daily profiles of the hourly average of total irradiance at ground 6.7 level (a) and the corresponding clearness index (b). The latitude and longitude of the site are 50° and -20° , respectively. The profiles are drawn from 2 to 5 April 2005, for the actual conditions and assuming a cloudless sky (clear sky). The extraterrestrial irradiance is also plotted on the left. (Source of data: HelioClim-3 database and McClear clear-sky model, available at SoDa Service (soda-pro.com).) 109 6.8 Map of the annual average of the extraterrestrial total irradiance received on a horizontal plane and the corresponding irradiation. Latitudes are shown on the left and longitudes at the top. 110 Multi-annual (1990-2004) average of the solar total irradiance 6.9 received on a horizontal plane on the ground and the corresponding irradiation. Latitudes are shown on the left and longitudes at the top. 111 7.1 Typical spectral distributions of the solar irradiance received on horizontal surfaces located one at the top of the atmosphere and the two others at ground in clear-sky conditions respectively limpid and turbid, between 200 and 2300 nm. Solar zenithal angle is 30°. Results from the numerical code libRadtran simulating the 119 radiative transfer in the atmosphere. Typical spectral distributions of the clearness index for two 7.2 cloudless atmospheres respectively limpid and turbid between

	200 and 2300 nm. Solar zenithal angle is 30°. Results from the numerical code libRadtran simulating the radiative transfer in the	100
	atmosphere.	120
1.3	Typical spectral distributions of the global irradiance and its	
	components received on a horizontal surface at ground for two	
	cloudless atmospheres: (a) a limpid and (b) a turbid, between	
	200 and 2300 nm. Solar zenithal angle is 30°. Results from the	
	numerical code libRadtran simulating the radiative transfer in the	
	atmosphere.	121
7.4	Typical spectral distributions of the direct and diffuse clearness	
	indices for two cloudless atmospheres respectively limpid and	
	turbid, between 200 and 2300 nm. Solar zenithal angle is 30°.	
	Results from the numerical code libRadtran simulating the	
	radiative transfer in the atmosphere.	122
7.5	Typical spectral distributions of the solar irradiance received	
	on a horizontal surface at ground in cloudless limpid conditions	
	between 200 and 2300 nm for three solar zenithal angles: 0°, 30°,	
	and 60°. Results from the numerical code libRadtran simulating	
	the radiative transfer in the atmosphere.	123
7.6	Typical spectral distributions of the clearness index KT between	
	200 and 2300 nm for three solar zenithal angles: 0°, 30°, and 60°,	
	for a cloudless limpid atmosphere. Results from the numerical	
	code libRadtran simulating the radiative transfer in the atmosphere.	124
7.7	Typical spectral distributions of the solar irradiance received	
	on a horizontal surface located at ground in limpid clear-sky	
	conditions, and in cloudy conditions with cloud optical depths	
	of 5 and 15, between 200 and 2300 nm. Solar zenithal angle is	
	30°. Results from the numerical code libRadtran simulating the	
	radiative transfer in the atmosphere.	127
7.8	Typical spectral distributions of the clearness index in limpid	
	clear-sky conditions, and in cloudy conditions with cloud optical	
	depths of 5 and 15, between 200 and 2300 nm. Solar zenithal angle	
	is 30°. Results from the numerical code libRadtran simulating the	
	radiative transfer in the atmosphere.	127
7.9	Typical spectral distributions of the solar irradiance received	
	on a horizontal surface located at ground in cloudy conditions.	
	between 200 and 2300 nm, for three solar zenithal angles: 0°, 30°.	
	and 60°. The cloud optical depth is 5. Results from the numerical	
	code libRadtran simulating the radiative transfer in the atmosphere.	128
7.10	Typical spectral distributions of the clearness index KT in cloudy	120
	conditions, between 200 and 2300 nm, for three solar zenithal	
	angles: 0°, 30°, and 60°. The cloud optical depth is 5. Results from	
	the numerical code libRadtran simulating the radiative transfer in	
	the atmosphere.	129
8.1	Schematic representation of a geographic location with two plains	
	separated by a mountain range oriented north-south. 100 km	

	wide. A moisture-laden wind blows from west to east. Symbols P1	
	and P2 are pyranometers measuring solar irradiation.	134
8.2	Schematic view of an infinite set of identical, small clouds,	
	whose positions relative to each other are frozen, moving above a	
	pyranometer at a constant speed.	139
8.3	Illustration of a dense and regular network of identical	
	pyranometers, spaced 2 km apart over an area of $100 \times 100 \text{ km}^2$.	142
8.4	Example of variogram of hourly irradiation as a function of the	
	distance, expressed relative to the square of the mean of the irradiation.	143
8.5	Illustration of sampling by a spaceborne imager.	146
8.6	Illustration of the influence of the sampling step. (a) The signal to	
	sample regularly, which is a sinusoid whose period is 20 arbitrary	
	units. (b) The results of the sampling with a step of respectively 20.	
	10, and 5 arbitrary units.	148
9.1	Pyranometer and its sun shield.	154
9.2	Equipment for the simultaneous measurement of the direct	
	component of radiation at normal incidence (pyrheliometer) and	
	the diffuse component on a horizontal plane (pyranometer). (a)	
	Front view and (b) profile.	155
9.3	SPN1 instrument for the simultaneous measurement of the global	
	total radiation and its diffuse component on the horizontal plane.	
	A cover is visible under the dome. It obscures the direction of the	
	sun for at least one thermopile at any instant.	156
9.4	Rotating shadowband irradiometers. The arm rotates for a few	
	seconds every minute. During the rotation, it casts a shadow on	
	the photodiode and temporarily hides the sun.	156
10.1	Example of the ground track (solid thick line) of a near-polar	
	orbiting satellite and swath limits (dotted lines) of a spaceborne	
	imager having a swath width of 3000 km at equator.	174
10.2	Example of images acquired by meteorological geostationary	
	satellites. Here, a composite image made from multispectral	
	images obtained by the Meteosat satellite on 2019-06-21 at 12:12	
	UTC is shown. Copyright (2019) EUMETSAT.	176
10.3	Illustration of the spatial interpolation to estimate radiation $H(t)$	
	at location P. Measurements $H1(t)$, $H2(t)$, and $H3(t)$ are acquired	
	at measuring stations MS1, MS2, and MS3, respectively. d1, d2,	
	and d3 are the distances between P and the stations.	180
11.1	Daily irradiation H_{day} measured at the meteorological station	
	in Addis Ababa, from 1988 to 1992. The dotted line is the	
	extraterrestrial daily irradiation H_{0day} . (Source: World Radiation	
	Data Centre (wrdc.mgo.rssi.ru) for H_{day} and SoDa Service	
	(soda-pro.com) for H_{0day} .)	191
11.2	Daily clearness index at the meteorological station in Addis	
	Ababa, from 1988 to 1992.	192
11.3	Superimposition of daily profiles of the hourly irradiation	
	measured at the Quezon City station, in July and August 2018.	
	(a) Actual measurements. (b) Actual measurements till 07-31	

	included, then artificial shift of +1 h. (Source: World Radiation	
	Data Centre (wrdc.mgo.rssi.ru).)	201
11.4	Daily profiles of the hourly irradiation measured at the station of	
	Quezon City and that received at the top of the atmosphere, from	
	12 to 18 January 2018. Measurements have been artificially shifted	
	by +1 h after 15 January. (Source: World Radiation Data Centre	
	(wrdc.mgo.rssi.ru) for the measurements and SoDa Service	
	(soda-pro.com) for the extraterrestrial irradiation.)	202
11.5	Example of checking the measured quantity and its unit based on	
	hourly measurements performed at the station of Alice Springs,	
	in Australia, for the time stamp 13:00. (Source: World Radiation	
	Data Centre (wrdc.mgo.rssi.ru).)	204
11.6	Example of checking the measured quantity and its unit based	
	on 10-min measurements simulated from hourly irradiations	
	measured at the station of Alice Springs, in Australia, for the time	
	stamp 12:10. (Source: World Radiation Data Centre (wrdc.mgo.rssi.ru).)	205
12.1	Daily irradiation measured during the year 2015 at a site at	
	latitude -42° and that received in cloudless conditions according	
	to the McClear model (soda-pro.com).	209
12.2	Diffuse component of the daily irradiation measured during the	
	year 2015 at a site at latitude -42° and that received in cloudless	
	conditions according to the McClear model (soda-pro.com).	209
12.3	Direct component of the daily irradiation measured at normal	
	incidence during the year 2015 at a site at latitude -42° and that	
	received in cloudless conditions according to the McClear model	
	(soda-pro.com).	210
12.4	Verification of the plausibility of the measurements by	
	superimposing the measured global irradiation and that resulting	
	from the sum of the direct and diffuse $(B+D)$ components for 2015.	
	The curves are superimposed when the measurements are consistent.	212
12.5	Daily average of irradiance in UV-A measured during 2010, at the	
	station in Kishinev, as well as that at the top of the atmosphere	
	and that received in cloud-free conditions according to the	
	McClear model. (Source: World Ozone and Ultraviolet Radiation	
	Data Centre (woudc.org) for measurements and McClear service	
	(soda-pro.com) for extraterrestrial and clear-sky irradiations.)	213
12.6	Hourly global irradiation measured during June 2018 at the station	
	of Sioux Falls, in the United States, as well as that at the top of the	
	atmosphere and that received in cloud-free conditions according	
	to the McClear model. (Source: World Radiation Data Centre	
	(wrdc.mgo.rssi.ru) for measurements and McClear service	
	(soda-pro.com) for extraterrestrial and clear-sky irradiations.)	215
12.7	Hourly diffuse component measured during June 2018 at the	
	station of Sioux Falls, in the United States, as well as that at the	
	top of the atmosphere and that received in cloud-free conditions	
	according to the McClear model. (Source: World Radiation Data	
	Centre (wrdc.mgo.rssi.ru) for measurements and McClear service	.
	(soda-pro.com) for extraterrestrial and clear-sky irradiations.)	216

Hourly direct component at normal incidence measured during June 2018 at the station of Sioux Falls, in the United States, as well as that received in cloud-free conditions according to the McClear model. (Source: World Radiation Data Centre (wrdc.mgo.rssi.ru) for measurements and McClear service (soda-pro.com) for clear-	
sky irradiations.)	217
Verification of the plausibility of the measurements by superimposing the measured global irradiation and that resulting from the sum of the direct and diffuse $(B+D)$ components for June 2018 at Sioux Falls. United States. The curves are superimposed	
when the measurements are consistent.	218
Two-dimensional representation of the hourly global irradiation measured at the Kishinev station in 2018. Black is reserved for null	
values. (Source: World Radiation Data Centre (wrdc.mgo.rssi.ru).)	219
Two-dimensional representation of the direct component of the hourly irradiation at normal incidence, measured at the Kishinev station in 2018. Black is reserved for null values. (Source: World	
Radiation Data Centre (wrdc.mgo.rssi.ru).)	220
Two-dimensional representation of the hourly global irradiation measured at the Kishinev station in 2018 after introduction of	
artifacts. (Source: World Radiation Data Centre (wrdc.mgo.rssi.ru).)	221
Two-dimensional representation of the hourly irradiation measured at the Bukit Kototabang station in 2015 in the spectral band [700, 2900] nm. Black is reserved for null values.	
(Source: World Radiation Data Centre (wrdc.mgo.rssi.ru).)	222
	Hourly direct component at normal incidence measured during June 2018 at the station of Sioux Falls, in the United States, as well as that received in cloud-free conditions according to the McClear model. (Source: World Radiation Data Centre (wrdc.mgo.rssi.ru) for measurements and McClear service (soda-pro.com) for clear- sky irradiations.) Verification of the plausibility of the measurements by superimposing the measured global irradiation and that resulting from the sum of the direct and diffuse (<i>B</i> + <i>D</i>) components for June 2018 at Sioux Falls, United States. The curves are superimposed when the measurements are consistent. Two-dimensional representation of the hourly global irradiation measured at the Kishinev station in 2018. Black is reserved for null values. (Source: World Radiation Data Centre (wrdc.mgo.rssi.ru).) Two-dimensional representation of the direct component of the hourly irradiation at normal incidence, measured at the Kishinev station in 2018. Black is reserved for null values. (Source: World Radiation Data Centre (wrdc.mgo.rssi.ru).) Two-dimensional representation of the hourly global irradiation measured at the Kishinev station in 2018 after introduction of artifacts. (Source: World Radiation Data Centre (wrdc.mgo.rssi.ru).) Two-dimensional representation of the hourly global irradiation measured at the Kishinev station in 2018 after introduction of artifacts. (Source: World Radiation Data Centre (wrdc.mgo.rssi.ru).) Two-dimensional representation of the hourly irradiation measured at the Kishinev station in 2015 in the spectral band [700, 2900] nm. Black is reserved for null values. (Source: World Radiation Data Centre (wrdc.mgo.rssi.ru).)

Tables

1.1	Correspondence between astronomical, boreal, and austral seasons	10
2.1	Yearly average of the astronomical daytime S_0 at various latitudes	31
3.1	Annual average, as well as minimum and maximum of the hourly	
	average of the extraterrestrial total irradiance when the sun is at	
	its highest during the day (12:00 TST), during a year, at various latitudes	50
3.2	Annual averages of the extraterrestrial total irradiance received	•••
	by a horizontal plane at various latitudes, as well as minima and	
	maxima of the daily mean	52
3.3	Typical values of extraterrestrial irradiance received at normal	
	incidence in various spectral intervals and their fraction of the	
	total solar irradiance TSI	58
4.1	The ten genera of clouds with their corresponding altitude range	
	and phase	77
4.2	Summary of the contributions of the various constituents of	
	the atmosphere to the attenuation of solar radiation during its	
	downward path to the ground	81
7.1	Typical irradiances (W m^{-2}) received at ground at normal	
	incidence integrated over various spectral intervals for two	
	cloudless atmospheres: one limpid and one turbid	125
7.2	Typical values of the fraction (%) of the irradiance received at	
	normal incidence at the top of the atmosphere (left column) and	
	on the ground (right columns) in various spectral ranges relative to	
	the respective total irradiance in two cloudless conditions	126
7.3	Typical irradiances (W m^{-2}) received at ground at normal	
	incidence integrated over various spectral intervals for two	
	cloudy atmospheres composed of a cloud of optical depth of	
	respectively 5 and 15	130
7.4	Typical values of the fraction (%) of the irradiance received at	
	normal incidence at the top of the atmosphere (left column) and	
	on the ground (right columns) in various spectral ranges relative to	
	the respective total irradiance under cloudy conditions	131
9.1	Relative uncertainties on the values measured by a pyrheliometer	
	for three durations of integration depending on the category	
	of quality of the measurements, according to the World	
	Meteorological Organization	157

9.2	Relative uncertainties on the daily values measured by a pyranometer depending on the category of quality of the	
	measurements, according to the World Meteorological Organization	157
9.3	Relative uncertainties on the hourly values measured by a	
	pyranometer depending on the category of quality of the	
	measurements, according to the World Meteorological Organization	159
9.4	Number of stations that measured daily total irradiation during at	
	least 1 year, between 1964 and 2019, according to the database of	
	the World Meteorological Organization, in each of the seven regions	160
10.1	Correction factors f_{clear} and f_{cloud} for clear-sky and cloudy	
	conditions, respectively, for each wavelength λ	187