MOLECULAR BIOLOGY

structure and dynamics of genomes and proteomes

Second Edition

Jordanka Zlatanova Kensal E. van Holde

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business A GARLAND SCIENCE BOOK

V11

Contents

Instand phontals conjuint the stream sectors by a protocol function optiges can see spect - (1.1.2 cm a) point and phagetasts concentration of a first sector strengthese concentrations of the sectors

Preface results that board and the second se	xvii
Acknowledgments	xix
About the Authors	xxi
Chapter 1: To the Cell and Beyond: The Realm of Molecular Biology	1
1.1 INTRODUCTION	2
1.2 THE VITAL ROLE OF MICROSCOPY IN BIOLOGY	2
The light microscope led to the first revolution in biology Biochemistry led to the discovery of the importance of	2
macromolecules in life's structure and processes	6
The electron microscope provided another order of resolution	6
1.3 FINE STRUCTURE OF CELLS AND VIRUSES AS REVEALED BY MICROSCOPY	8
1.4 ULTRAHIGH RESOLUTION: BIOLOGY AT THE MOLECULAR LEVEL	10
Fluorescence techniques allow for one approach to ultra-	
resolution	10
Confocal fluorescence microscopy allows observation of the fluorescence emitted by a particular substance in a cell	10
FIONA provides ultimate optical resolution by use of fluorescence	11
FRET allows distance measurements at the molecular level	12
Single-molecule cryo-electron microscopy is a powerful new technique	12
The atomic force microscope feels molecular structure	13
X-ray diffraction and nuclear magnetic resonance provide resolution to the atomic level	14
Chemical imaging, the new powerful combination of	
imaging techniques	15
1.5 MOLECULAR GENETICS: ANOTHER FACE OF	
MOLECULAR BIOLOGY	15
Key concepts	15
Further reading	
Videos on the Internet	17
Chapter 2: From Classical Genetics to Molecular Genetics	19
2.1 INTRODUCTION	19
2.2 CLASSICAL GENETICS AND THE RULES OF	1.2

TRAIT INHERITANCE

20

Gregor Mendel developed the formal rules of genetics	20
Mendel's laws have extensions and exceptions	25
Genes are arranged linearly on chromosomes and can be	00
mapped The nature of genes and how they determine phenotypes	26
was long a mystery	27
2.3 THE GREAT BREAKTHROUGH TO MOLECU-	
LAR GENETICS	27
Bacteria and bacteriophage exhibit genetic behavior and	
serve as model systems	27
Transformation and transduction allow transfer of genetic	0.0
information	29
The Watson-Crick model of DNA structure provided the final key to molecular genetics	30
and the second	31
2.5 WHOLE GENOMES AND EVOLUTION	33
Evolutionary theory: From Darwin to the present day Human-driven evolution: The story of Vavilov	36
The tree of life based on sequencing of thousands of spe-	500
cies: Back to the two-domain tree of life	36
Key concepts	36
Further reading	37
Videos on the Internet	37
Chapter 3: Proteins	39
	39
3.1 INTRODUCTION Proteins are macromolecules with enormous variety in	00
size, structure, and function	39
Proteins are essential for the structure and functioning of	
all organisms	41
3.2 PROTEIN STRUCTURE	41
Proteins are homogeneous polypeptides and amino acids	10
are their building blocks	42
Fred Sanger and the sequence of insulfi	
In proteins, amino acids are covalently connected to form	44
polypeptides	
3.3 LEVELS OF STRUCTURE IN THE POLYPEP- TIDE CHAIN	46
The primary structure of a protein is a unique sequence of	
amino acids	46
A protein's secondary structure involves regions of regular	50
folding stabilized by hydrogen bonds	50

Each protein has a unique three-dimensional tertiary structure	53
The tertiary structure of most proteins is divided into distinguishable folded domains	55
Algorithms are now used to identify and classify domains in proteins of known sequence	58
Some domains or proteins are intrinsically disordered	62
Quaternary structure involves associations between pro-	
tein molecules to form aggregated structures	64
3.4 HOW DO PROTEINS FOLD?	65
Folding can be a problem	65
Chaperones help or allow proteins to fold	66
3.5 HOW ARE PROTEINS DESTROYED?	70
The proteasome is the general protein destruction system	71
3.6 THE PROTEOME AND PROTEIN INTERAC- TION NETWORKS	73
New technologies allow a census of an organism's pro-	
teins and their interactions	73
Key concepts	76
Further reading	76
Videos on the Internet	77
Chapter 4: Nucleic Acids	79
4.1 INTRODUCTION	80
Protein sequences are dictated by nucleic acids	80
4.2 CHEMICAL STRUCTURE OF NUCLEIC ACIDS	80
DNA and RNA have similar but different chemical structures	80
Nucleic acids (polynucleotides) are polymers of nucleotides	82
4.3 PHYSICAL STRUCTURES OF DNA	83
Discovery of the B-DNA structure was a breakthrough in molecular biology	83
A number of alternative DNA structures exist	89
Although the double helix is quite rigid, it can be bent by bound proteins	91
DNA can also form folded tertiary structures	91
Closed DNA circles can be twisted into supercoils	92
4.4 PHYSICAL STRUCTURES OF RNA	95
RNA can adopt a variety of complex structures but not the	55
B-form helix	95
4.5 ONE-WAY FLOW OF GENETIC INFORMATION	99
4.6 METHODS USED TO STUDY NUCLEIC ACIDS	100
Key concepts	108
Further reading	108
Videos on the Internet	109
Chapter 5: Recombinant DNA: Principles and Applications	111
5.1 INTRODUCTION	
Cloning of DNA involves several fundamental steps	112
5.2 CONSTRUCTION OF RECOMBINANT DNA	112
MOLECULES	113
Restriction endonucleases and ligases are essential tools in cloning	
Contract of the second se	113
5.3 VECTORS FOR CLONING	118

	Genes coding for selectable markers are inserted into vec-	118
	tors during their construction Bacterial plasmids were the first cloning vectors	121
	Recombinant bacteriophages can serve as bacterial vectors	121
	Cosmids and phagemids expand the repertoire of cloning	122
	vectors	125
	5.4 ARTIFICIAL CHROMOSOMES AS VECTORS	125
	Bacterial artificial chromosomes meet the need for	140
	cloning very large DNA fragments in bacteria	125
	Eukaryotic artificial chromosomes provide proper	
	maintenance and expression of very large DNA	
	fragments in eukaryotic cells	125
)	5.5 EXPRESSION OF RECOMBINANT GENES	126
	Expression vectors allow regulated and efficient expres-	
	sion of cloned genes	126
	Shuttle vectors can replicate in more than one organism	128
	5.6 INTRODUCING RECOMBINANT DNA INTO	
	HOST CELLS	128
	Numerous host-specific techniques are used to introduce	
,	recombinant DNA molecules into living cells	128
	5.7 POLYMERASE CHAIN REACTION AND SITE-	
)	DIRECTED MUTAGENESIS	129
ļ.	5.8 SEQUENCING OF ENTIRE GENOMES	131
)	Genomic libraries contain the entire genome of an organ-	
	ism as a collection of recombinant DNA molecules	131
)	There are two approaches for sequencing large genomes	132
	5.9 MANIPULATING THE GENETIC CONTENT OF	
	EUKARYOTIC ORGANISMS	133
	Making a transgenic mouse involves numerous steps	133
	To inactivate, replace, or otherwise modify a particular	
	gene, the vector must be targeted for homologous	
	recombination at that particular site	134
	5.10 PRACTICAL APPLICATIONS OF RECOMBI-	
	NANT DNA TECHNOLOGIES	135
	Hundreds of pharmaceutical compounds are produced in recombinant bactería	105
		135
	Plant genetic engineering is a huge but controversial industry Gene therapy is a complex multistep process aiming	137
	to correct defective genes or gene functions that are	
	responsible for disease	141
	Delivering a gene into sufficient cells within a specific tis-	
	sue and ensuring its subsequent long-term expression	
	is a challenge	142
	CRISPR, the new technology to change genomic DNA	
	sequence at a predefined position Jurassic Park or de-extinction	143
		145
	Cloning of whole animals by nuclear transfer Key concepts	146
	Further reading	147 148
	Videos on the Internet	
		149
	Chapter 6: Protein–Nucleic Acid Interactions	151
	6.1 INTRODUCTION	151
	6.2 DNA-PROTEIN INTERACTIONS	152
	DNA-protein binding occurs by many modes and mechanisms	152

Contents

Site-	specific binding is the most widely used mode	154
Most recognition sites fall into a limited number of classes		
Mos	t specific binding requires the insertion of protein	
in	to a DNA groove	156
Som	e proteins cause DNA looping	157
Ther	e are a few major protein motifs of DNA-binding domains	158
Heliz	x-turn-helix motif interacts with the major groove	158
Zinc	fingers also probe the major groove	158
Leuc	cine zippers are especially suited for dimeric sites	159
6.3	RNA-PROTEIN INTERACTIONS	159
6.4	STUDYING PROTEIN-NUCLEIC ACID	
	INTERACTIONS	162
Key	concepts	168
Furtl	her reading	168
Vide	os on the Internet	169
Cha	pter 7: The Genetic Code, Genes, and Genomes	171
7.1	GENES AS NUCLEIC ACID REPOSITORIES OF	10
61	GENES AS NUCLEIC ACID REPOSITORIES OF GENETIC INFORMATION	171
Our	understanding of the nature of genes is constantly	111
	volving	171
	central dogma states that information flows from	
	NA to protein	172
It wa	s necessary to separate cellular RNAs to seek the adaptors	174
Mess	senger RNA, tRNA, and ribosomes constitute the	
pr	otein factories of the cell	174
7.2	RELATING PROTEIN SEQUENCE TO DNA	
	SEQUENCE IN THE GENETIC CODE	175
The f	first task was to define the nature of the code	175
7.3	SURPRISES FROM THE EUKARYOTIC CELL:	
	INTRONS AND SPLICING	179
Euka	ryotic genes usually contain interspersed noncoding	
	quences	179
7.4	GENES FROM A NEW AND BROADER PER-	
	SPECTIVE	180
Prote	ein-coding genes are complex	180
	ome sequencing has revolutionized the gene concept	180
	ations, pseudogenes, and alternative splicing all con-	
	bute to gene diversity	181
7.5	COMPARING WHOLE GENOMES AND NEW	
	PERSPECTIVES ON EVOLUTION	182
Geno	ome sequencing reveals puzzling features of genomes	182
	are DNA sequence types and functions distributed	
	eukaryotes?	184
	concepts	188
	per reading	189
Video	os on the Internet	189
Chaj	pter 8: Physical Structure of the Genomic Material	191
8.1	INTRODUCTION	191
8.2	CHROMOSOMES OF VIRUSES AND BACTERIA	192
Gene	rally, viruses are packages for minimal genomes	192
	rial chromosomes are organized structures in the	
	toplasm	200

DNA-bending proteins and DNA-bridging proteins help to pack bacterial DNA	201
8.3 EUKARYOTIC CHROMATIN	
Eukaryotic chromosomes are highly condensed	201
DNA-protein complexes segregated into a nucleus	201
The nucleosome is the basic repeating unit of eukaryotic	201
chromatin	203
Histone nonallelic variants and postsynthetic modifica-	
tions create a heterogeneous population of nucleosomes	206
The nucleosome family is dynamic	211
Nucleosome assembly in vivo uses histone chaperones	212
8.4 HIGHER-ORDER CHROMATIN STRUCTURE	213
Nucleosomes along the DNA form a chromatin fiber	213
The chromatin fiber is folded, but its structure remains	610
controversial	214
The organization of chromosomes in the interphase	
	216
8.5 MITOTIC CHROMOSOMES	217
	217
A number of proteins are needed to form and maintain	
mitotic chromosomes	218
Centromeres and telomeres are chromosome regions	
with special functions	219
There are a number of models of mitotic chromosome	
structure	221
Key concepts	225
Further reading	225
Videos on the Internet	226
Chapter 9: Transcription in Bacteria	227
9.1 INTRODUCTION	228
	228
9.2 OVERVIEW OF TRANSCRIPTION	228
There are aspects of transcription common to all organisms	
Transcription requires the participation of many proteins	229
Transcription is rapid but is often interrupted by pauses	232
Transcription can be visualized by electron microscopy	233
9.3 RNA POLYMERASES AND TRANSCRIPTION	
CATALYSIS	235
RNA polymerases are a large family of enzymes that pro-	005
duce RNA transcripts of polynucleotide templates	235
9.4 MECHANICS OF TRANSCRIPTION IN BACTERIA	237
Initiation requires a multisubunit polymerase complex, termed the holoenzyme	237
The initiation phase of bacterial transcription is frequent-	
ly aborted	241
Elongation in bacteria must overcome topological problems	242
There are several mechanisms for transcription termina-	
tion in hacteria	244
Antisense transcription in bacteria is widespread and	
might have numerous functions	246
Understanding transcription in bacteria is useful in clini-	
Understanding wanterspirite	
cal practice	247
	247 249
cal practice	247

Contents

Chapter 10: Transcription in Eukaryotes	251
10.1 INTRODUCTION	252
Transcription in eukaryotes is a complex, highly regulated process	252
Eukaryotic cells contain multiple RNA polymerases, each specific for distinct functional subsets of genes	252
10.2 TRANSCRIPTION BY RNA POLYMERASE II	253
The yeast Pol II structure provides insights into transcrip- tional mechanisms	253
The structure of Pol II is more evolutionarily conserved than its sequence	255
Nucleotide addition during transcription elongation is cyclic Transcription initiation depends on multisubunit protein	257 257
complexes that assemble at core promoters An additional protein complex is needed to connect Pol II to regulatory proteins	257
Termination of eukaryotic transcription is coupled to polyadenylation of the RNA transcript	262
10.3 TRANSCRIPTION BY RNA POLYMERASE I	263
10.4 TRANSCRIPTION BY RNA POLYMERASE III	264 264
RNA polymerase III specializes in transcription of small genes	204
10.5 TRANSCRIPTION IN EUKARYOTES: PERVA- SIVE AND SPATIALLY ORGANIZED	005
Most of the eukaryotic genome is transcribed	265 265
Transcription in eukaryotes is not uniform within the nucleus	269
Active and inactive genes are spatially separated in the nucleus	270
10.6 METHODS FOR STUDYING EUKARYOTIC	210
TRANSCRIPTION	271
A battery of methods is available for the study of transcription	271
Key concepts	277
Further reading	277
Videos on the Internet	278
Chapter 11: Regulation of Transcription in Bacteria	279
11.1 INTRODUCTION	280
11.2 GENERAL MODELS FOR REGULATION OF TRANSCRIPTION	280
Regulation can occur via differences in promoter strength or use of alternative o factors	280
Regulation through ligand binding to RNA polymerase is called stringent control	281
11.3 SPECIFIC REGULATION OF TRANSCRIPTION	282
Regulation of specific genes occurs through <i>cis-trans</i> interactions with transcription factors	282
Transcription factors are activators and repressors whose own activity is regulated in a number of ways	284
Several transcription factors can act synergistically or in opposition to activate or repress transcription	285
11.4 TRANSCRIPTIONAL REGULATION OF OPERONS IS IMPORTANT TO BACTERIAL	
PHYSIOLOGY	285
The lac operon is controlled by a dissociable repressor	
and an activator	285

251	Control of the trp operon involves both repression and	001
252	attenuation	291
	The same protein can serve as an activator or a repressor: the <i>ara</i> operon	294
252	11.5 OTHER MODES OF GENE REGULATION IN	
252	BACTERIA	295
253	DNA supercoiling is involved in both global and local regulation of transcription	295
	DNA methylation can provide specific regulation	296
253	11.6 COORDINATION OF GENE EXPRESSION IN	
255	BACTERIA	297
257	Networks of transcription factors form the basis of coordi- nated gene expression	298
257	Key concepts	299
	Further reading	299
262	Videos on the Internet	300
262	Chapter 12: Regulation of Transcription in Eukaryotes	301
263	12.1 INTRODUCTION	302
264	12.2 REGULATION OF TRANSCRIPTION INITIA- TION: REGULATORY REGIONS AND TRAN-	
264	SCRIPTION FACTORS	302
	Core and proximal promoters are needed for basal and	
265	regulated transcription	302
265	Enhancers, silencers, insulators, and locus control regions	
269	are all distal regulatory elements	303
270	Some eukaryotic transcription factors are activators,	
071	others are repressors, and still others can be either, depending on context	306
271	Regulation can use alternative components of the basal	
271	transcriptional machinery	307
277	Mutations in gene regulatory regions and in transcrip-	
277 278	tional machinery components lead to human diseases	308
279	12.3 REGULATION OF TRANSCRIPTIONAL	
	ELONGATION	308
280	The polymerase may stall close to the promoter	308
	Transcription elongation rate can be regulated by elonga-	
280	tion factors	309
	12.4 TRANSCRIPTION REGULATION AND	
280	CHROMATIN STRUCTURE	309
	What happens to nucleosomes during transcription?	309
281	12.5 REGULATION OF TRANSCRIPTION BY	
282	HISTONE MODIFICATIONS AND VARIANTS	311
	Modification of histones provides epigenetic control of	
282	transcription	311
	Gene expression is often regulated by histone post-trans-	
284	lational modifications	312
	Readout of histone post-translational modification marks	
285	involves specialized protein molecules	313
	Post-translational histone marks distinguish transcrip-	
	tionally active and inactive chromatin regions	314
285	Some genes are specifically silenced by post-translational	
1.5.4	modification in some cell lines	315
285	Polycomb protein complexes silence genes through	
	H3K27 trimethylation and H2AK119 ubiquitylation	316

Contents xi

Heterochromatin formation at telomeres in yeast silences genes through H4K16 deacetylation	318
HP1-mediated gene repression in the majority of eukary- otic organisms involves H3K9 methylation	318
Poly(ADP)ribosylation of proteins is involved in tran-	210
scriptional regulation Histone variants H2A.Z, H3.3, and H2A.Bbd are	319
present in active chromatin	319
MacroH2A is a histone variant prevalent in inactive chromatin Problems caused by chromatin structure can be fixed by	321
remodeling	321
Endogenous metabolites can exert rheostat control of transcription	323
12.6 DNA METHYLATION	
DNA methylation patterns in genomic DNA may partici-	324
pate in regulation of transcription	325
Carcinogenesis alters the pattern of CpG methylation	327
DNA methylation changes during embryonic development	327
DNA methylation is governed by complex enzymatic machinery	220
There are proteins that read the DNA methylation mark	328 328
The second department of the second second second second second second	320
12.7 LONG NONCODING RNAS IN TRANSCRIP- TIONAL REGULATION	329
Noncoding RNAs play surprising roles in regulating tran-	349
scription	329
The sizes and genomic locations of noncoding transcripts	end)
are remarkably diverse	330
12.8 METHODS FOR MEASURING THE ACTIVITY	
OF TRANSCRIPTIONAL REGULATORY ELE- MENTS	333
Key concepts	334
Further reading	335
Vidoes on the Internet	336
Chapter 13: Transcription Regulation in the Human Genome	220
	339
13.1 INTRODUCTION	340
Rapid full-genome sequencing allows deep analysis	340
13.2 BASIC CONCEPTS OF ENCODE	340
ENCODE depends on high-throughput, massively proces- sive sequencing and sophisticated computer algo-	
rithms for analysis	340
The ENCODE project integrates diverse data relevant to transcription in the human genome	342
13.3 REGULATORY DNA SEQUENCE ELEMENTS	342
Seven classes of regulatory DNA sequence elements make	
up the transcriptional landscape	342
13.4 SPECIFIC FINDINGS CONCERNING CHRO- MATIN STRUCTURE FROM ENCODE	343
Millions of DNase I-hypersensitive sites mark regions of	5-20
accessible chromatin	343
DNase I signatures at promoters are asymmetric and	
	344
stereotypic	344
	344 345

The chromatin environment at regulatory elements and in	
gene bodies is also heterogeneous and asymmetric	346
13.5 ENCODE INSIGHTS INTO GENE REGULATION	346
Distal control elements are connected to promoters in a complex network	240
Transcription factor binding defines the structure and	346
function of regulatory regions	348
Transcription factors interact in a huge network	349
TF-binding sites and TF structure co-evolve	351
DNA methylation patterns show a complex relationship with transcription	352
13.6 ENCODE OVERVIEW	353
What have we learned from ENCODE, and where is it leading?	353
Certain methods are essential to ENCODE project studies	354
13.7 BEYOND THE ENCODE PROJECT	356
Key concepts	357
Further reading	357
Videos on the Internet	358
	250
Chapter 14: RNA Processing	359
14.1 INTRODUCTION	360
Most RNA molecules undergo post-transcriptional processing	360
There are four general categories of processing	360
Eukaryotic RNAs exhibit much more processing than bacterial RNAs	360
14.2 PROCESSING OF TRNAS AND RRNAS	361
tRNA processing is similar in all organisms	361
All three mature ribosomal RNA molecules are cleaved from a single long precursor RNA	361
14.3 PROCESSING OF EUKARYOTIC MRNA: END MODIFICATIONS	364
Eukaryotic mRNA capping is co-transcriptional	364
Polyadenylation at the 3'-end serves a number of functions	364
Chemical modifications of eukaryotic RNAs and their roles	366
14.4 PROCESSING OF EUKARYOTIC MRNA: SPLICING	368
The splicing process is complex and requires great precision	368
Splicing is carried out by spliceosomes	368
Splicing can produce alternative mRNAs	369
Tandem chimerism links exons from separate genes	371
Trans-splicing combines exons residing in the two	376
complementary DNA strands	370
14.5 REGULATION OF SPLICING AND ALTERNA-	376
TIVE SPLICING	376
Splice sites differ in strength	376
Exon-Introli architecture anects sphere one dougo	377
RNA secondary structure can regulate alternative splicing	379
Sometimes alternative splicing regulation needs no	379
auxiliary regulators The rate of transcription and chromatin structure may	5,0
help regulate splicing	379
14.6 SELF-SPLICING: INTRONS AND RIBOZYMES	381
A fraction of introns is excised by self-splicing RNA	381
There are two classes of self-splicing introns	381

14.7 OVERVIEW: THE HISTORY OF AN MRNA	
MOLECULE	382
Proceeding from the primary transcript to a functioning	200
mRNA requires a number of steps	382
mRNA is exported from the nucleus to the cytoplasm	383
through nuclear pore complexes RNA sequence can be edited by enzymatic modification	505
even after transcription	383
14.8 RNA QUALITY CONTROL AND DEGRADATION	385
Bacteria, archaea, and eukaryotes all have mechanisms for RNA quality control	385
Archaea and eukaryotes utilize specific pathways to deal	
with different RNA defects	386
14.9 BIOGENESIS AND FUNCTIONS OF SMALL	
SILENCING RNAS	386
All ssRNAs are produced by processing from larger precursors	386
Key concepts	390 393
Further reading Videos on the Internet	393
videos on the internet	334
Chapter 15: Translation: The Players	395
15.1 INTRODUCTION	396
15.2 A BRIEF OVERVIEW OF TRANSLATION	396
Three participants are needed for translation to occur	396
15.3 TRANSFER RNA	398
tRNA molecules fold into four-arm cloverleaf structures	398
tRNAs are aminoacylated by a set of specific enzymes, aminoacyl-tRNA synthetases	400
Aminoacylation of tRNA is a two-step process	400
Quality control or proofreading occurs during the amino-	
acylation reaction Insertion of noncanonical amino acids into polypeptide	401
chains is guided by stop codons	402
15.4 MESSENGER RNA	407
The Shine-Dalgamo sequence in bacterial mRNAs aligns the message on the ribosome	407
Eukaryotic mRNAs do not have Shine-Dalgarno sequenc-	407
es but more complex 5'- and 3'-untranslated regions	408
Overall translation efficiency depends on a number of factors	410
15.5 RIBOSOMES	410
The ribosome is a two-subunit structure comprising rRNAs and numerous ribosomal proteins	
Functional ribosomes require both subunits, with specific	411
complements of RNA and protein molecules	411
The small subunit can accept mRNA but must join with	
the large subunit for peptide synthesis to occur	413
Ribosome assembly has been studied both <i>in vivo</i> and <i>in vitro</i> The expanding "riboverse"	414
Key concepts	417
Further reading	
Videos on the Internet	740
	420
Chapter 16: Translation: The Process	
16.1 INTRODUCTION	422
16.2 AN OVERVIEW OF TRANSLATION: HOW FAST AND HOW ACCURATE?	
A CONTRACTOR	422

	16.3 ADVANCED METHODOLOGY FOR THE	
	ANALYSIS OF TRANSLATION	424
	Cryo-EM allows visualization of discrete kinetic states of	
2	ribosomes	424
	X-ray crystallography provides the highest resolution	425
5	Single-pair fluorescence resonance energy transfer allows	
	dynamic studies at the single-particle level	427
	16.4 INITIATION OF TRANSLATION	427
6	Initiation of translation begins on a free small ribosomal	
	subunit	427
5	Cryo-EM provides details of initiation complexes	428
	Start site selection in eukaryotes is complex	429
6	16.5 TRANSLATIONAL ELONGATION	430
	Decoding means matching the codon to the anticodon-	
1	carrying aminoacyl-tRNA	430
6	Accommodation denotes a relaxation of distorted tRNA to	
)	allow peptide bond formation	432
3	Peptide bond formation is accelerated by the ribosome	432
ŀ	The formation of hybrid states is an essential part of trans-	
	location	434
5	Structural information on bacterial elongation factors	
1	provides insights into mechanisms	436
	There is an exit tunnel for the peptide chain in the ribosome	438
	Translation elongation in eukaryotes involves even	
,	more factors	439
}	Ribosome stalling during translation elongation	439
3	16.6 TERMINATION OF TRANSLATION	440
	RF3 aids in removing RF1 and RF2	441
)	Ribosomes are recycled after termination	442
)	Our views of translation continue to evolve	442
		443 443
	Key concepts	
,	Further reading	444
	Videos on the Internet	445
	Chapter 17: Regulation of Translation	447
	17.1 INTRODUCTION	448
7		440
	17.2 REGULATION OF TRANSLATION BY CON-	
5	TROLLING RIBOSOME NUMBER	448
)	Ribosome numbers in bacteria are responsive to the	
)	environment	448
	Ribosome numbers in eukaryotes: Control and conse-	440
	quences of dysregulation	449
	Synthesis of ribosomal components in bacteria is coordinated	450
	Regulation of the synthesis of ribosomal components in eukaryotes involves chromatin structure	451
		451
5	17.3 REGULATION OF TRANSLATION INITIATION	454
ł	Regulation of translation initiation is ubiquitous and	
	remarkably varied	454
	Regulation may depend on protein factors binding to the	
)	5'- or 3'-ends of mRNA	454
	Cap-dependent regulation is the major pathway for con-	
	trolling initiation	455
	Initiation may utilize internal ribosome entry sites 5^{+}_{-3} .	455
	5'-3'-UTR interactions provide a novel mechanism that regulates initiation in eukaryotes	4==
	Bunders infination in eukaryotes	457

Contents	xii

Riboswitches are RNA sequence elements that regulate initiation in response to stimuli	457
Repeat-associated non-AUG translation	459
MicroRNAs can bind to mRNA, thereby regulating translation	455
17.4 REGULATION OF THE ELONGATION PROCESS	461
17.5 mRNA STABILITY AND DECAY IN EUKARYOTES	463
The two major pathways of decay for nonfaulty mRNA molecules start with mRNA deadenylation	464
The 5' \rightarrow 3' pathway is initiated by the activities of the	Here in the
decapping enzyme Dcp2	465
The $3' \rightarrow 5'$ pathway uses the exosome, followed by a dif- ferent decapping enzyme, DcpS	466
There are additional pathways for mRNA degradation	468
Unused mRNA is sequestered in P bodies and stress granules	468
Cells have several mechanisms that destroy faulty mRNA molecules	471
mRNA molecules that contain premature stop codons are	
degraded through nonsense-mediated decay or NMD	472
No-go decay (NGD) functions when the ribosome stalls	211
during elongation	473
Non-stop decay or NSD functions when mRNA does not contain a stop codon	473
17.6 SUMMARY OF TRANSLATION REGULATION	474
Key concepts	474
Further reading	474
Videos on the Internet	476
Chapter 18: Protein Processing and Modification	477
18.1 INTRODUCTION	478
18.2 STRUCTURE OF BIOLOGICAL MEMBRANES	478
Biological membranes are protein-rich lipid bilayers	478
Numerous proteins are associated with biomembranes	479
18.3 PROTEIN TRANSLOCATION THROUGH BIO- LOGICAL MEMBRANES	479
Protein translocation can occur during or after translation	480
Membrane translocation in bacteria and archaea primar- ily functions for secretion	480
Membrane translocation in eukaryotes serves a multitude	100
of functions	481
Integral membrane proteins have special mechanisms for membrane insertion	482
Vesicles transport proteins between compartments in eukaryotic cells	484
18.4 PROTEOLYTIC PROTEIN PROCESSING: CUT-	405
TING, SPLICING, AND DEGRADATION Proteolytic cleavage is sometimes used to produce mature	485
proteins from precursors	485
Some proteases can catalyze protein splicing	486
Controlled proteolysis is also used to destroy proteins no	
longer needed	488
18.5 POST-TRANSLATIONAL CHEMICAL MODIFI- CATIONS OF SIDE CHAINS	489
Modification of side chains can affect protein structure	
and function	489
Phosphorylation plays a major role in signaling	491

Acetylation mainly modifies interactions	493
Several classes of glycosylated proteins contain added	maß
sugar moieties Mechanisms of glycosylation depend on the type of modi-	494
fication	500
Ubiquitylation adds single or multiple ubiquitin mol-	
ecules to proteins through an enzymatic cascade	502
Specificity of ubiquitin targeting is determined by a spe- cial class of enzymes	504
The structure of protein-ubiquitin conjugates determines	304
the biological role of the modification	509
Polyubiquitin marks proteins for degradation by the proteasome	509
Sumoylation adds single or multiple SUMO molecules to proteins	510
18.6 PROTEIN CO-TRANSLATIONAL FOLDING	512
18.7 THE GENOMIC ORIGIN OF PROTEINS	513
Key concepts	513
Further reading	514
Videos on the Internet	515
Chapter 19: DNA Replication in Bacteria	517
19.1 INTRODUCTION	518
19.2 FEATURES OF DNA REPLICATION SHARED	
BY ALL ORGANISMS	518
Replication on both strands creates a replication fork	518
Mechanistically, synthesis of new DNA chains requires a	-
template, a polymerase, and a primer	520
DNA replication requires the simultaneous action of two DNA polymerases	520
Other protein factors are obligatory at the replication fork	521
19.3 DNA REPLICATION IN BACTERIA	523
Bacterial chromosome replication is bidirectional, from a	
single origin of replication	523
DNA polymerase III catalyzes replication in bacteria	523
Sliding clamp β , or processivity factor, is essential for	523
processivity The clamp loader organizes the replisome	523
The full complement of proteins in the replisome is orga-	
nized in a complex and dynamic way	524
DNA polymerase I is necessary for maturation of Okazaki	
fragments	528
19.4 THE PROCESS OF BACTERIAL REPLICATION	530
The replisome is a dynamic structure during elongation	530
19.5 INITIATION AND TERMINATION OF BACTE- RIAL REPLICATION	532
Initiation involves both specific DNA sequence elements and numerous proteins	532
Termination of replication also employs specific DNA sequences and protein factors that bind to them	534
19.6 DNA REPLICATION AND BACTERIAL CELL CYCLE	536
	540
19.7 BACTERIOPHAGE AND PLASMID REPLICATION	542
Rolling-circle replication is an alternative mechanism Phage replication can involve both bidirectional and	
rolling-circle mechanisms	543

xiv Contents

	Key concepts	543
	Further reading	546
	Videos on the Internet	547
	Chapter 20: DNA Replication in Eukaryotes	549
	20.1 INTRODUCTION	550
	20.2 REPLICATION INITIATION IN EUKARYOTES	550
	Replication initiation in eukaryotes proceeds from mul-	
	tiple origins	550
	Eukaryotic origins of replication have diverse DNA and	553
chromatin structure depending on the biological species There is a defined scenario for formation of initiation complexe		
	Re-replication must be prevented	561
	Histone methylation regulates onset of replication licensing	561
	20.3 REPLICATION ELONGATION IN EUKARYOTES	561
	Eukaryotic replisomes both resemble and significantly	
	differ from those of bacteria	561
	Other components of the bacterial replisome have func-	ECA
	tional counterparts in eukaryotes Eukaryotic elongation has some special dynamic features	564 565
	20.4 REPLICATION OF CHROMATIN Chromatin structure is dynamic during replication	565
	Histone chaperones may play multiple roles in replication	566
	Both old and newly synthesized histones are required in	000
	replication	567
	Epigenetic information in chromatin must also be replicated	568
	20.5 THE DNA END-REPLICATION PROBLEM AND	
	ITS RESOLUTION	570
	Telomerase solves the end-replication problem	570
	Alternative lengthening of telomeres pathway is active in telomerase-deficient cells	572
	20.6 MITOCHONDRIAL DNA REPLICATION	573
	Are circular mitochondrial genomes myth or reality?	574
	Models of mitochondrial genome replication are contentious	574
	20.7 REPLICATION IN VIRUSES THAT INFECT	
	EUKARYOTES	575
	Retroviruses use reverse transcriptase to copy RNA into DNA	575
	Key concepts	578
	Further reading	579
	Videos on the Internet	580
	Chapter 21: DNA Recombination	581
	21.1 INTRODUCTION	582
	21.2 HOMOLOGOUS RECOMBINATION	582
	Homologous recombination plays a number of roles in bacteria	583
	Homologous recombination has multiple roles in mitotic cells	584
		584
	21.3 HOMOLOGOUS RECOMBINATION IN BACTERIA	584
	End resection requires the RecBCD complex	585
	Strand invasion and strand exchange both depend on RecA Much concerning homologous recombination is still not	586
	understood	587
	180	507

Holliday junctions are the essential intermediary struc-	500
tures in HR	589
21.4 HOMOLOGOUS RECOMBINATION IN	
EUKARYOTES	590
Proteins involved in eukaryotic recombination resemble	-
their bacterial counterparts	590
HR malfunction is connected with many human diseases	591
Meiotic recombination allows exchange of genetic infor-	500
mation between homologous chromosomes in meiosis	593
21.5 NONHOMOLOGOUS RECOMBINATION	596
Transposable elements or transposons are mobile DNA	
sequences that change positions in the genome	596
Many transposons are transcribed but only a few have	500
known functions	596
There are several types of transposons	598
DNA class II transposons can use either of two mecha- nisms to transpose themselves	601
	001
Retrotransposons, or class I transposons, require an RNA intermediate	602
21.6 SITE-SPECIFIC RECOMBINATION	602
Bacteriophage λ integrates into the bacterial genome by site-specific recombination	603
	005
Immunoglobulin gene rearrangements also occur through site-specific recombination	603
Key concepts	616
Further reading	616
Videos on the Internet	617
Chapter 22: DNA Repair	619
22.1 INTRODUCTION	620
22.2 TYPES OF LESIONS IN DNA	622
Natural agents, from both within and outside a cell, can	
Natural agents, from both within and outside a cell, can change the information content of DNA	622
change the information content of DNA	622 624
change the information content of DNA 22.3 PATHWAYS AND MECHANISMS OF DNA REPAIR	
change the information content of DNA	
change the information content of DNA 22.3 PATHWAYS AND MECHANISMS OF DNA REPAIR DNA lesions are countered by a number of mechanisms	624
change the information content of DNA 22.3 PATHWAYS AND MECHANISMS OF DNA REPAIR DNA lesions are countered by a number of mechanisms of repair Thymine dimers are directly repaired by DNA photolyase The enzyme O ⁶ -alkylguanine alkyltransferase is involved	624 624
change the information content of DNA 22.3 PATHWAYS AND MECHANISMS OF DNA REPAIR DNA lesions are countered by a number of mechanisms of repair Thymine dimers are directly repaired by DNA photolyase The enzyme O ⁶ -alkylguanine alkyltransferase is involved in the repair of alkylated bases	624 624
change the information content of DNA 22.3 PATHWAYS AND MECHANISMS OF DNA REPAIR DNA lesions are countered by a number of mechanisms of repair Thymine dimers are directly repaired by DNA photolyase The enzyme O ⁶ -alkylguanine alkyltransferase is involved in the repair of alkylated bases Nucleotide excision repair is active on helix-distorting lesions	624 624 626
change the information content of DNA 22.3 PATHWAYS AND MECHANISMS OF DNA REPAIR DNA lesions are countered by a number of mechanisms of repair Thymine dimers are directly repaired by DNA photolyase The enzyme O ⁶ -alkylguanine alkyltransferase is involved in the repair of alkylated bases Nucleotide excision repair is active on helix-distorting lesions The role of TFIIH in NER	624 624 626 628
change the information content of DNA 22.3 PATHWAYS AND MECHANISMS OF DNA REPAIR DNA lesions are countered by a number of mechanisms of repair Thymine dimers are directly repaired by DNA photolyase The enzyme O ⁶ -alkylguanine alkyltransferase is involved in the repair of alkylated bases Nucleotide excision repair is active on helix-distorting lesions The role of TFIIH in NER Base excision repair corrects damaged bases	624 624 626 628 628
change the information content of DNA 22.3 PATHWAYS AND MECHANISMS OF DNA REPAIR DNA lesions are countered by a number of mechanisms of repair Thymine dimers are directly repaired by DNA photolyase The enzyme O ⁶ -alkylguanine alkyltransferase is involved in the repair of alkylated bases Nucleotide excision repair is active on helix-distorting lesions The role of TFIIH in NER Base excision repair corrects damaged bases Mismatch repair corrects errors in base pairing	624 624 626 628 628 628 629
change the information content of DNA 22.3 PATHWAYS AND MECHANISMS OF DNA REPAIR DNA lesions are countered by a number of mechanisms of repair Thymine dimers are directly repaired by DNA photolyase The enzyme O ⁶ -alkylguanine alkyltransferase is involved in the repair of alkylated bases Nucleotide excision repair is active on helix-distorting lesions The role of TFIIH in NER Base excision repair corrects damaged bases Mismatch repair corrects errors in base pairing Methyl-directed mismatch repair in bacteria uses meth-	624 624 626 628 628 629 630
change the information content of DNA 22.3 PATHWAYS AND MECHANISMS OF DNA REPAIR DNA lesions are countered by a number of mechanisms of repair Thymine dimers are directly repaired by DNA photolyase The enzyme O ⁶ -alkylguanine alkyltransferase is involved in the repair of alkylated bases Nucleotide excision repair is active on helix-distorting lesions The role of TFIIH in NER Base excision repair corrects damaged bases Mismatch repair corrects errors in base pairing Methyl-directed mismatch repair in bacteria uses meth- ylation on adenines as a guide	624 624 626 628 628 629 630
change the information content of DNA 22.3 PATHWAYS AND MECHANISMS OF DNA REPAIR DNA lesions are countered by a number of mechanisms of repair Thymine dimers are directly repaired by DNA photolyase The enzyme O ⁶ -alkylguanine alkyltransferase is involved in the repair of alkylated bases Nucleotide excision repair is active on helix-distorting lesions The role of TFIIH in NER Base excision repair corrects damaged bases Mismatch repair corrects errors in base pairing Methyl-directed mismatch repair in bacteria uses meth- ylation on adenines as a guide Mismatch repair pathways in eukaryotes may be directed	624 626 628 628 629 630 630 631
change the information content of DNA 22.3 PATHWAYS AND MECHANISMS OF DNA REPAIR DNA lesions are countered by a number of mechanisms of repair Thymine dimers are directly repaired by DNA photolyase The enzyme O ⁶ -alkylguanine alkyltransferase is involved in the repair of alkylated bases Nucleotide excision repair is active on helix-distorting lesions The role of TFIIH in NER Base excision repair corrects damaged bases Mismatch repair corrects errors in base pairing Methyl-directed mismatch repair in bacteria uses meth- ylation on adenines as a guide Mismatch repair pathways in eukaryotes may be directed by strand breaks during DNA replication	624 624 628 628 629 630 630 631 631
change the information content of DNA 22.3 PATHWAYS AND MECHANISMS OF DNA REPAIR DNA lesions are countered by a number of mechanisms of repair Thymine dimers are directly repaired by DNA photolyase The enzyme O ⁶ -alkylguanine alkyltransferase is involved in the repair of alkylated bases Nucleotide excision repair is active on helix-distorting lesions The role of TFIIH in NER Base excision repair corrects damaged bases Mismatch repair corrects errors in base pairing Methyl-directed mismatch repair in bacteria uses meth- ylation on adenines as a guide Mismatch repair pathways in eukaryotes may be directed by strand breaks during DNA replication Repair of double-strand breaks can be error-free or error-prone	624 624 628 628 629 630 630 631 631
change the information content of DNA 22.3 PATHWAYS AND MECHANISMS OF DNA REPAIR DNA lesions are countered by a number of mechanisms of repair Thymine dimers are directly repaired by DNA photolyase The enzyme O ⁶ -alkylguanine alkyltransferase is involved in the repair of alkylated bases Nucleotide excision repair is active on helix-distorting lesions The role of TFIIH in NER Base excision repair corrects damaged bases Mismatch repair corrects errors in base pairing Methyl-directed mismatch repair in bacteria uses meth- ylation on adenines as a guide Mismatch repair pathways in eukaryotes may be directed by strand breaks during DNA replication Repair of double-strand breaks can be error-free or error-prone Homologous recombination repairs double-strand breaks	 624 624 626 628 629 630 630 631 632 633
change the information content of DNA 22.3 PATHWAYS AND MECHANISMS OF DNA REPAIR DNA lesions are countered by a number of mechanisms of repair Thymine dimers are directly repaired by DNA photolyase The enzyme O ⁶ -alkylguanine alkyltransferase is involved in the repair of alkylated bases Nucleotide excision repair is active on helix-distorting lesions The role of TFIIH in NER Base excision repair corrects damaged bases Mismatch repair corrects errors in base pairing Methyl-directed mismatch repair in bacteria uses meth- ylation on adenines as a guide Mismatch repair pathways in eukaryotes may be directed by strand breaks during DNA replication Repair of double-strand breaks can be error-free or error-prone Homologous recombination repairs double-strand breaks faithfully	624 624 628 628 629 630 630 631 631
 change the information content of DNA 22.3 PATHWAYS AND MECHANISMS OF DNA REPAIR DNA lesions are countered by a number of mechanisms of repair Thymine dimers are directly repaired by DNA photolyase The enzyme O⁶-alkylguanine alkyltransferase is involved in the repair of alkylated bases Nucleotide excision repair is active on helix-distorting lesions The role of TFIIH in NER Base excision repair corrects damaged bases Mismatch repair corrects errors in base pairing Methyl-directed mismatch repair in bacteria uses methylation on adenines as a guide Mismatch repair pathways in eukaryotes may be directed by strand breaks during DNA replication Repair of double-strand breaks can be error-free or error-pronethomologous recombination repairs double-strand breaks faithfully Nonhomologous end-joining restores the continuity of 	624 626 628 628 629 630 630 631 632 633 633
change the information content of DNA 22.3 PATHWAYS AND MECHANISMS OF DNA REPAIR DNA lesions are countered by a number of mechanisms of repair Thymine dimers are directly repaired by DNA photolyase The enzyme O ⁶ -alkylguanine alkyltransferase is involved in the repair of alkylated bases Nucleotide excision repair is active on helix-distorting lesions The role of TFIIH in NER Base excision repair corrects damaged bases Mismatch repair corrects errors in base pairing Methyl-directed mismatch repair in bacteria uses meth- ylation on adenines as a guide Mismatch repair pathways in eukaryotes may be directed by strand breaks during DNA replication Repair of double-strand breaks can be error-free or error-prone Homologous recombination repairs double-strand breaks faithfully Nonhomologous end-joining restores the continuity of the DNA double helix in an error-prone process	624 624 628 628 629 630 630 631 631 632 633 633 633
 change the information content of DNA 22.3 PATHWAYS AND MECHANISMS OF DNA REPAIR DNA lesions are countered by a number of mechanisms of repair Thymine dimers are directly repaired by DNA photolyase The enzyme O⁶-alkylguanine alkyltransferase is involved in the repair of alkylated bases Nucleotide excision repair is active on helix-distorting lesions The role of TFIIH in NER Base excision repair corrects damaged bases Mismatch repair corrects errors in base pairing Methyl-directed mismatch repair in bacteria uses methylation on adenines as a guide Mismatch repair pathways in eukaryotes may be directed by strand breaks during DNA replication Repair of double-strand breaks can be error-free or error-pronethomologous recombination repairs double-strand breaks faithfully Nonhomologous end-joining restores the continuity of 	624 626 628 628 629 630 630 631 632 633 633

Contents

22.5 CHROMATIN AS AN ACTIVE PLAYER IN DNA	
REPAIR	637
Histone variants and their post-translational modifica-	
tions are specifically involved in DNA repair	638
22.6 SUMMARY OF DNA REPAIR	644
22.7 OVERVIEW: THE ROLE OF DNA REPAIR IN LIFE	645

	Key concepts	652
7	Further reading	653
B	Videos on the Internet	654
1	Glossary	655
5	Index	695