Introducing Einstein's Relativity A deeper understanding

Ray d'Inverno and James Vickers

School of Mathematical Sciences, University of Southampton

Contents

1	The organization of the book	1
	1.1 The evolution of the book	1
	1.2 Acknowledgements	2
	1.3 The status of scientific research	3
	1.4 A note for students on studying from a book	5
	1.5 A final note for the less able student from Ray	6
	1.6 A final note for the more able student from James	7
	1.7 Research interests of the authors	9
	Exercises	9
	Further reading	10
Pe	art A Special Relativity	
2	The k-calculus	13
	2.1 Model building	13
	2.2 Historical background	14
	2.3 Newtonian framework	15
	2.4 Galilean transformations	16
	2.5 The principle of special relativity	17
	2.6 The constancy of the velocity of light	18
	2.7 The k-factor	19
	2.8 Relative speed of two inertial observers	20
	2.9 Composition law for velocities	21
	2.10 The relativity of simultaneity	22
	2.11 Causality	23
	2.12 The clock paradox	24
	2.13 The Lorentz transformations	25
	2.14 The four-dimensional world view	26
	Exercises	28
	Further reading	29
3	The key attributes of special relativity	31
	3.1 Standard derivation of the Lorentz transformations	31
	3.2 Mathematical properties of Lorentz transformations	33
	3.3 Length contraction	35
	3.4 Time dilation	36
	3.5 Transformation of velocities	37
	3.6 Relationship between space-time diagrams of inertial observers	38
	3.7 Acceleration in special relativity	40
	3.8 Uniform acceleration	40
	3.9 The twin paradox	42

viii	i Contents	
	3.10 The Doppler effect	43 45
	Exercises	47
	Further reading	
4	The elements of relativistic mechanics	49
	4.1 Newtonian theory	49
	4.2 Isolated systems of particles in Newtonian mechanics	51
	4.3 Relativistic mass	52
	4.4 Relativistic energy	54
	4.5 Photons	50
	Exercises	51
	Further reading	01
P	art B The Formalism of Tensors	
5	Tensor algebra	65
2	5.1 Introduction	65
	5.2 Manifolds and coordinates	66
	5.3 Curves and surfaces	67
	5.4 Transformation of coordinates	68
	5.5 Contravariant tensors	71
	5.6 Covariant tensors	72
	5.7 Mixed tensors	74
	5.8 Tensor fields	75
	5.9 Elementary operations with tensors	75
	5.10 Index-free interpretation of contravariant vector fields	78
	Exercises	81
	Further reading	83
6	Tensor calculus	85
	6.1 Partial derivative of a tensor	85
	6.2 The Lie derivative	86
	6.3 The affine connection and covariant differentiation	90
	6.4 Affine geodesics	92
	6.5 The Riemann tensor	94
	6.7 Affine flatness	95
	6.7 Anne hamess	96
	6.9 Metric geodesics	100
	6.10 The metric connection	101
	6.11 Metric flatness	103
	6.12 The curvature tensor	104
	6.13 The Weyl tensor	105
	Exercises	107
	Further reading	108
	Integration, variation, and symmetry	115
	1.1 Tensor densities	115
	2 The Levi-Civita alternating symbol	116
	.5 I ne metric determinant	117

	7.4 Integrals and Stokes' theorem	120
	7.5 The Euler-Lagrange equations	122
	7.6 The variational method for geodesics	125
	7.7 Isometries	128
	Exercises	130
	Further reading	130
_		152
P	art C General Relativity	
8	Special relativity revisited	135
	8.1 Minkowski space-time	135
	8.2 The null cone	137
	8.3 The Lorentz group	138
	8.4 Proper time	140
	8.5 An axiomatic formulation of special relativity	142
	8.6 A variational principle approach to classical mechanics	144
	8.7 A variational principle approach to relativistic mechanics	146
	8.8 Covariant formulation of relativistic mechanics	148
	Exercises	149
	Further reading	151
9	The principles of general relativity	153
	9.1 The role of physical principles	153
	9.2 Mach's principle	154
	9.3 Mass in Newtonian theory	159
	9.4 The principle of equivalence	162
	9.5 The principle of general covariance	165
	9.6 The principle of minimal gravitational coupling	165
	9.7 The correspondence principle	166
	Exercises	167
	Further reading	168
10) The field equations of general relativity	171
	10.1 Non-local lift experiments	171
	10.2 The Newtonian equation of deviation	172
	10.3 The equation of geodesic deviation	173
	10.4 The vacuum field equations of general relativity	175
	10.5 Freely falling frames	176
	10.6 The Newtonian correspondence	178
	10.7 Einstein's route to the field equations of general relativity	182
	10.8 The full field equations of general relativity	184
	Exercises	185
	Further reading	186
11	General relativity from a variational principle	187
	11.1 The Palatini equation	187
	11.2 Differential constraints on the field equations	188
	11.3 A simple example	189
	11.4 The Einstein Lagrangian	190
	11.5 Indirect derivation of the field equations	192
	11.6 An equivalent Lagrangian	193

Contents ix

х	Contents	

		105
	11.7 The Palatini approach	195
	11.8 The full field equations	19/
	Exercises	198
	Further reading	201
1	The energy-momentum tensor	203
1.	12.1 Preview	203
	12.2 Incoherent matter	203
	12.3 The coupling constant	206
	12.4 Perfect fluid	207
	12.5 Maxwell's equations	208
	12.6 Potential formulation of Maxwell's equations	210
	12.7 The Maxwell energy-momentum tensor	211
	12.8 Other energy-momentum tensors	213
	12.9 The dominant energy condition	214
	Exercises	215
	Further reading	216
1	The structure of the field equations	217
1	13.1 Interpretation of the field equations	217
	13.2 Determinacy non-linearity and differentiability	218
	13.3 The cosmological term	220
	13.4 The conservation equations	222
	13.5 The Cauchy problem	223
	13.6 Einstein's equations as evolution equations	226
	13.7 Solving Einstein's equations in harmonic coordinates	229
	13.8 The hole problem	231
	13.9 The equivalence problem	232
	13.10 The status of exact solutions	232
	Exercises	235
	Further reading	236
1	The 3+1 and 2+2 formalisms	220
	14.1 The geometry of submanifolds	239
	14.2 The induced metric	239
	14.3 The induced covariant derivative	240
	14.4 The Gauss-Codazzi equations	241
	14.5 Calculating the Gauss equation	245
	14.6 Calculating the Codazzi equation	245
	14.7 The geometry of foliations	240
	14.8 Derivation of the Ricci equation	248
	14.9 The lapse function	240
	14.10 The 3+1 decomposition of the metric	242
	14.11 The 3+1 decomposition of the vacuum Einstein equations	252
	14.12 The 3+1 equations and numerical relativity	255
	14.13 The 2+2 and characteristic approaches	257
	14.14 The 2+2 metric decomposition	263
	Exercises	265
	Further reading	268
		-00

15 The	Schwarzschild solution	269
15.1	Stationary solutions	269
15.2	Hypersurface-orthogonal vector fields	270
15.3	Static solutions	272
15.4	Spherically symmetric solutions	274
15.5	The Schwarzschild solution	277
15.6	Properties of the Schwarzschild solution	279
15.7	Isotropic coordinates	281
15.8	The Schwarzschild interior solution	- 282
Exerci	ses	284
Furth	er reading	287
16 Clas	sical experimental tests of general relativity	289
16.1	Introduction	289
16.2	Gravitational red shift	290
16.3	The Eötvös experiment	293
16.4	The Einstein equivalence principle	294
16.5	Classical Kepler motion	296
16.6	Advance of the perihelion of Mercury	298
16.7	Bending of light	303
16.8	Time delay of light	307
16.9	The PPN parameters	309
16.10	A chronology of experimental and observational events	312
16.11	Rubber-sheet geometry	313
Exerci	ses	315
Furth	er reading	318

Contents xi

Part D Black Holes

17	17 Non-rotating black holes		
	17.1	Characterization of coordinates	321
	17.2	Singularities	323
	17.3	Spatial and space-time diagrams	324
	17.4	Space-time diagram in Schwarzschild coordinates	325
	17.5	A radially infalling particle	327
	17.6	Eddington-Finkelstein coordinates	328
	17.7	Event horizons	331
	17.8	Black holes	332
	17.9	A Newtonian argument	334
	17.10	Tidal forces in a black hole	335
	17.11	Observational evidence for black holes	337
	17.12	Theoretical status of black holes	338
	Exerci	ses	340
	Furthe	er reading	342
18	Max	imal extension and conformal compactification	343
10	18.1	Maximal analytic extensions	343
	18.2	The Kruckal solution	343
	18.3	The Firstein Rosen bridge	346
	18./	Denrose diagram for Minkowski space-time	347
	10.4	i chi ose diagram for minikovski spaco time	

xii	Conte	ents	
	18.5	Penrose diagram for the Kruskal solution	351
	Exerci	ses	352
	Furthe	er reading	353
19	Cha	rged black holes	355
17	19 1	The field of a charged mass point	355
	19.2	Intrinsic and coordinate singularities	357
	19.3	Space-time diagram of the Reissner-Nordström solution	358
	19.4	Neutral particles in Reissner-Nordström space-time	360
	19.5	Penrose diagrams of the maximal analytic extensions	361
	Exerci	ses	364
	Furthe	er reading	366
20	Rota	ting black holes	367
	20.1	Null tetrads	367
	20.2	The Kerr solution from a complex transformation	369
	20.3	The three main forms of the Kerr solution	370
	20.4	Basic properties of the Kerr solution	372
	20.5	Singularities and horizons	374
	20.6	The principal null congruences	377
	20.7	Eddington-Finkelstein coordinates	379
	20.8	The stationary limit	381
	20.9	Maximal extension for the case $a^2 < m^2$	382
	20.10	Maximal extension for the case $a^2 > m^2$	384
	20.11	Rotating black holes	385
	20.12	The definition of mass in general relativity	388
	20.13	The singularity theorems	391
	20.14	Black hole thermodynamics and Hawking radiation	394
	Exerci	ises	396
	Furth	er reading	397

Part E Gravitational Waves

21	Line	arized gravitational waves and their detection	401
	21.1	The linearized field equations	401
	21.2	Gauge transformations	403
	21.3	Linearized plane gravitational waves	405
	21.4	Polarization states of plane waves	409
	21.5	Solving the wave equation	411
	21.6	The quadrupole formula	416
	21.7	The quadrupole generated by a binary star system	417
	21.8	Gravitational energy	420
	21.9	Gravitational energy-flux from a binary system	424
	21.10	Effects of gravitational radiation on the orbit of a binary system	427
	21.11	Measuring gravitational wave displacements	430
	21.12	A direct interferometric measurement	435
	21.13	The detection of gravitational waves	435
	21.14	Sources of gravitational radiation and the observation of gravitational waves	440
	Exerci	ises	140
	Furth	er reading	444
			447

1 1	Error	at gravitational success	
22	Exac	ct gravitational waves	451
	22.1	Gravitational waves and symmetries	451
	22.2	Einstein-Rosen waves	451
	22.3	Exact plane wave solutions	454
	22.4	Impulsive plane gravitational waves	455
	22.5	Colliding impulsive plane gravitational waves	457
B	22.6	Colliding gravitational waves	458
	Exerci	ises	459
	Furthe	er reading	460
23	Radi	iation from an isolated source	461
	23.1	Radiating isolated sources	461
	23.2	Characteristic hypersurfaces of Einstein's equations	462
	23.3	Radiation coordinates	463
	23.4	Bondi's radiating metric	465
	23.5	The characteristic initial value problem	467
	23.6	News and mass loss	468
	23.7	The Petrov classification	471
	23.8	The peeling theorem	473
	23.9	The optical scalars	474
	Exerci	ises	476
	Furthe	er reading	478

Contents xiii

Part F Cosmology 24 Relativistic cosmolo

24	Rela	itivistic cosmology	481
	24.1	Preview	481
	24.2	Olbers' paradox	483
	24.3	Newtonian cosmology	484
	24.4	The cosmological principle	487
	24.5	Weyl's postulate	489
	24.6	Standard models of relativistic cosmology	490
	24.7	Spaces of constant curvature	492
	24.8	The geometry of 3-spaces of constant curvature	495
	24.9	Friedmann's equation	499
	24.10	Propagation of light	502
	24.11	A cosmological definition of distance	504
	24.12	Hubble's law in relativistic cosmology	505
	Exerc	ises	508
	Furth	er reading	510
25	The	classical cosmological models	511
	25.1	The flat space models	511
	25.2	Models with vanishing cosmological constant	514
	25.3	Classification of Friedmann models	516
	25.4	The Einstein static model and the de Sitter model	519
	25.5	Early epochs of the universe	521
	25.6	The steady-state theory	522
	25.7	The event horizon of the de Sitter universe	523
	25.8	Particle and event horizons	526

xiv Contents

	25.9	Lorentzian constant curvature space-times	527	
	25.10) Conformal structure of Robertson-Walker space-times	530	
	25.11	Conformal structure of de Sitter and anti-de Sitter space-time	531	
	25.12	2 Our model of the universe	534	
	Exerc	cises	535	
	Furth	ner reading	537	
26	Mod	dern cosmology	539	
	26.1	Multi-component models	539	
	26.2	Measuring the Hubble constant	545	
	26.3	The cosmic microwave background radiation	547	
	26.4	How heavy is the universe?	551	
	26.5	The ΛCDM model of cosmology	555	
	26.6	The early Universe	558	
	26.7	Inflationary cosmology	560	
	26.8	The anthropic principle	565	
	26.9	Final questions	567	
	Exerc	rises	569	
	Furth	ier reading	571	
Ar	Iswei	rs to exercises	573	
Se	lecte	d bibliography	505	
Ind	dex		575	