A History of Mathematical Impossibility

JESPER LÜTZEN

Department of Mathematical Sciences, University of Copenhagen, Denmark

Contents

1.	Introduction	1
	1.1 The organization of the book	1
	1.2 What is an impossibility theorem?	4
	1.3 Meta statements and mathematical results	5
	1.4 Why are impossibility results often misunderstood	
	among amateur mathematicians?	6
	1.5 Impossibility results in mathematics and elsewhere	9
	1.6 A classification of mathematical impossibility results	12
	1.7 Impossibility as a creative force	13
2.	Prehistory: Recorded and Non-recorded Impossibilities	15
3.	The First Impossibility Proof: Incommensurability	19
	3.1 The discovery	19
	3.2 The consequences of the impossibility theorem	23
	3.3 Incommensurable quantities in Euclid's Elements	25
4.	Classical Problems of Antiquity: Constructions and	
	Positive Theorems	27
	4.1 Squaring a circle	28
	4.2 Doubling the cube	35
	4.3 Trisecting the angle	39
5.	The Classical Problems: The Impossibility Question in Antiquity	42
	5.1 Existence and constructability	42
	5.2 Pappus on the classification of geometric problems	44
	5.3 The quadrature of a circle	47
	5.4 Using non-constructible quantities: Archimedes and Ptolemy	48
6.	Diorisms: Conclusions about the Greeks and Medieval Arabs	52
	6.1 Diorisms	52
	6.2 Conclusion on impossibilities in Greek mathematics	56
	6.3 Medieval Arabic contributions	59
7.	Cube Duplication and Angle Trisection in the	
	Seventeenth and Eighteenth Centuries	65
	7.1 The seventeenth century	65
	7.2 Descartes's analytic geometry	66
	7.3 Descartes on the duplication of a cube and the	
	trisection of an angle	69

	7.4 Descartes's contributions	74
	7.5 The eighteenth century	75
	7.6 Montucla and Condorcet compared with Descartes	79
8.	Circle Quadrature in the Seventeenth Century	81
	8.1 "Solutions" and positive results	81
	8.2 Descartes on the quadrature of a circle	83
	8.3 Wallis on the impossibility of an analytic quadrature of	
	a circle	85
	8.4 Different quadratures of a circle	89
	8.6 Gregory's argument for the impossibility of the	91
	algebraic indefinite circle quadrature	93
	8.7 Huygens' and Wallis' critique of Gregory	96
	8.8 Leibniz on the impossibility of the indefinite circle quadrature 8.9 Newton's argument for the impossibility of the	99
	algebraic indefinite oval quadrature	102
	8.10 Why prove impossibility	105
9.	Circle Quadrature in the Eighteenth Century	108
	9.1 Joseph Saurin (1659–1737)	108
	9.2 Anonymous	110
	9.3 Thomas Fantet De Lagny (1660-1734)	110
	9.4 The enlightened opinion	112
	9.5 D'Alembert	114
	9.6 The French Academy of Sciences. Condorcet	116
	9.7 Enlightening the amateurs 9.8 Lambert and the irrationality of π	110
	9.8 Lambert and the mationality of <i>n</i>	110
10.	Impossible Equations Made Possible: The Complex Numbers	121
	10.1 The extension of the number system: Wallis's account	121
	10.2 Cardano's sophisticated and useless numbers	124
	10.3 The unreasonable usefulness of the complex numbers	127
	10.4 A digression about infinitesimals	130
11.	Euler and the Bridges of Königsberg	133
12.	The Insolvability of the Quintic by Radicals	140
	12.1 Early results	140
	12.2 Paolo Ruffini	145
	12.3 Niels Henrik Abel	149
13.	Constructions with Ruler and Compass: The Final	
	Impossibility Proofs	155
	13.1 Gauss on regular polygons	155
	13.2 Wantzel	160
	13.3 The quadrature of a circle	163

14.	Impossible Integrals	168
	14.1 Early considerations	168
	14.2 Abel's mostly unpublished results	170
	14.3 Joseph Liouville on integration in algebraic terms	171
	14.4 Liouville on integration in finite terms	173
	14.5 Liouville on solution of differential equations by quadrature	177
	14.6 Later developments	178
	14.7 Concluding remarks on the situation <i>c</i> .1830	179
15.	Impossibility of Proving the Parallel Postulate	181
	15.1 The axiomatic deductive method	182
	15.2 The parallel postulate and the attempts to prove it	184
	15.3 Indirect proofs: Implicit non-Euclidean geometry	187
	15.4 Non-Euclidean geometry: The invention	190
	15.5 The help from differential geometry of surfaces	194
	15.6. Conclusions	197
16.	Hilbert and Impossible Problems	199
	16.1 Impossibility as a solution; rejection of ignorabimus	199
	16.2 Hilbert's third problem: Equidecomposability	202
	16.3 Hilbert's seventh problem	204
	16.4 Hilbert's first problem	205
17.	Hilbert and Gödel on Axiomatization and Incompleteness	210
	17.1 The axiomatization of mathematics	210
	17.2 Hilbert's second Paris problem	212
	17.3 The foundational crisis	215
	17.4 Gödel's incompleteness theorems	216
	17.5 Hilbert's tenth Paris problem	221
	17.6 Conclusion	223
18.	Fermat's Last Theorem	225
	18.1 Fermat's contribution	225
	18.2 Nineteenth-century contributions	230
	18.3 The twentieth-century proof	233
19.	Impossibility in Physics	238
	19.1 The impossibility of perpetual motion machines	238
	19.2 Twentieth-century impossibilities in physics	242
20.	Arrow's Impossibility Theorem	248
	20.1 The theory of voting	248
	20.2 Welfare economics	251
	20.3 The Impossibility theorem	253
	20.4 The Gibbard-Satterthwaite theorem	256

21. Conclusion	259
21.1 From unimportant non-results to remarkable "solutions"	259
21.2 From meta-statements to mathematical theorems	260
21.3 Different types of problems and different types of proofs	260
21.4 Pure and applied impossibility theorems	262
21.5 Controversies	263
21.6 Impossibility as a creative force	263
Recommended Supplementary Reading	
References	
Index	