Introduction to Mechanics of Solid Materials

Lallit Anand

Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge, MA 02139, USA

Ken Kamrin

Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge, MA 02139, USA

Sanjay Govindjee

Department of Civil and Environmental Engineering University of California, Berkeley Berkeley, CA 94720, USA

OXFORD UNIVERSITY PRESS

Contents

Introduction

I FOUNDATIONAL TOPICS

1	Kin	ematics and strain	11	
	1.1	Introduction	11	
	1.2	Strain in two dimensions	12	
	1.3	3 Strain in three dimensions		
		1.3.1 Infinitesimal rotation	20	
	1.4	Some important states of homogeneous strain	23	
		1.4.1 Uniaxial compression	23	
		1.4.2 Simple shear	24	
		1.4.3 Pure shear	25	
		1.4.4 Uniform compaction (dilatation)	26	
	1.5	Volume changes in arbitrary strain states. Strain deviator	27	
		1.5.1 Volume changes	27	
		1.5.2 Strain deviator	27	
	1.6	Summary of major concepts related to infinitesimal strain	30	
2	Stress and equilibrium			
	2.1	Forces and traction	33	
	2.2	Components of stress at a point	34	
		2.2.1 Sign convention for positive normal and shear stresses	36	
	2.3	Plane stress	36	
	2.4	Traction vector on a surface element with normal ${f n}$ in terms of		
		the stress $oldsymbol{\sigma}$	37	
		2.4.1 Plane-stress result	37	
		2.4.2 Three-dimensional result	38	
	2.5	Equilibrium	39	
		2.5.1 Equilibrium equations in plane stress	39	
		Balance of forces	39	
		Balance of moments	41	

2.5.2 Balance of forces and moments in three dimensions

2.5.3 Equations of motion in three dimensions

1

41

43

54

2.6	Some	simple states of stress	44
	2.6.1	Pure tension or compression	44
	2.6.2	Pure shear stress	47
	2.6.3	Hydrostatic pressure	47
2.7	Stress	deviator	48
2.8	Summ	nary of major concepts related to stress	49

3	3 Balance laws of forces and moments for small deformations				
	3.1 Basic definition and its implications				
	3.2 Notation3.3 Local balance laws for forces and moments for small deformations		52		
			53		

4 Stress and strain are symmetric second-order tensors

4.1	Tensor	°S	54
	4.1.1	What is a tensor?	54
	4.1.2	Components of a tensor	55
	4.1.3	Transpose of a tensor	55
	4.1.4	Symmetric and skew tensors	56
	4.1.5	Trace of a tensor	56
	4.1.6	Deviatoric tensors	57
	4.1.7	Inner product of tensors. Magnitude of a tensor	57
	4.1.8	Matrix of a tensor	58
4.2	Transf	ormation relations for components of stress and strain	
	under	a change in basis	59
	4.2.1	Transformation relations for vector components	60
	4.2.2	Transformation relations for tensor components	60
4.3	Eigenv	alues and eigenvectors of stress and strain tensors	62

II ELASTICITY

5	Isotropic linear elasticity			
	5.1	Introd	luction	69
	5.2	Strain	-energy density function for linear elastic materials	70
		5.2.1	Strain-energy function for arbitrarily anisotropic linear elastic	
			materials	71
		5.2.2	Matrix form of the linear elastic stress-strain relation	72
		5.2.3	Strain-energy function for isotropic linear elastic materials	74
	5.3	Stress	-strain relation for an isotropic linear elastic material	75
		5.3.1	Inverted form of the stress-strain relation	76

		532	Physical interpretation of the elastic constants in terms of	
		2. پ. پ	local strain and stress states	77
		5.3.3	Limiting value of Poisson's ratio for incompressible materials	79
	5.4	Stress-	strain relations in terms of E and $ u$	80
	5.5	Relatic	ons between various elastic moduli	80
	5.6	Therm	al strains	85
	5.7	Basic e	equations of isotropic linear elasticity	91
	5.8	The N	avier-Cauchy equations	92
	5.9	Bound	lary conditions	93
	510	Mixed	problem of elastostatics for a homogeneous and isotropic body	94
	5110	5,10.1	Uniqueness	95
		5.10.2	Superposition	95
	5.11	Histor	ical note	96
6	Elas	tic de	formation of thick-wailed cylinders	98
	6.1	Introd	luction	98
	6.2	Strain	-displacement relations	102
	6.3	Stress	-strain relations	103
	6.4	Equat	ions of equilibrium	103
	6.5	Bound	dary conditions	105
		6.5.1	Axial strain ϵ_o for different end conditions	107
	6.6	Stress	concentration in a thick-walled cylinder under internal pressure	108
7	Stre	ess coi	ncentration	110
	7.1	Stress	concentration in a large flat circular plate with a central	
		hole,	under a far-field radial stress	110
	7.2	Stress	concentration on the boundary of a circular hole in an	
		infini	te plate under far-field tension	113
	7.3	Stress	s concentration on the boundary of an elliptical hole in an	
		infini	te plate under far-field tension	116
8	Wa	ve pro	opagation in isotropic elastic bodies	118
	8.1	Plane	e elastic waves	118
	8.2	Long	itudinal wave speed	119
	8.3	Shea	r wave speed	120
	8.4	Mea	suring elastic moduli with waves	121

9	Lim	Limits to elastic response				
	9.1	Introduction	122			
	9.2 Failure criterion for brittle materials in tension		123			
	9.3	Yield criterion for ductile isotropic materials	124			
		9.3.1 Mises yield condition	126			
		9.3.2 The Mises yield condition from a physical thought experiment	128			

9.4	Tresca	Tresca yield condition				
	9.4.1	Coulomb-Mohr yield criterion for cohesive granular				
		materials in compression	131			
	9.4.2	The Drucker-Prager yield criterion	133			

III PLASTICITY AND CREEP

10	One	-dime	nsional plasticity	137
	10.1	Some	phenomenological aspects of the elastic-plastic stress-strain	
		respon	ise of polycrystalline metals	137
		10.1.1	Isotropic strain-hardening	142
		10.1.2	Strain rate and temperature dependence of plastic flow	144
	10.2	One-d	imensional theory of rate-independent plasticity	146
		10.2.1	Kinematics	147
		10.2.2	Rate of work per unit volume	147
		10.2.3	Constitutive equation for elastic response	147
		10.2.4	Flow strength. Strain-hardening	148
		10.2.5	Constitutive equation for the plastic strain rate $\dot{\epsilon}^p$	151
			Yield condition	151
			Elastic state. Elastic-plastic state	152
			Elastic unloading and plastic loading from an elastic-plastic state	152
			Consistency condition and the value of $\dot{ar{\epsilon}}^p$	152
			The plastic strain rate $\dot{\epsilon}^p$ in terms of σ and $\dot{\epsilon}$	154
			The complete equation for the plastic strain rate $\dot{\epsilon}^p$	154
		10.2.6	Representation of rate-independent elasto-plasticity using	
			an analog model	155
		10.2.7	Summary of the rate-independent theory	155
		10.2.8	Material parameters in the rate-independent theory	157
	10.3	Nume	rical time-integration algorithm for rate-independent plasticity	160
		10.3.1	Time-integration procedure	161
		10.3.2	Summary of time-integration algorithm for rate-independent	
			plasticity	164
	10.4	One-d	limensional theory of rate-dependent plasticity	166
		10.4.1	Power-law creep at high temperatures	169
		10.4.2	Summary of a power-law rate-dependent theory with	
			isotropic hardening	172

Numer	ical time-integration algorithm for rate-dependent plasticity	172
10.5.1	Time-integration procedure	172
1052	Summary of time-integration algorithm for rate-dependent	
10.0.2	plasticity	174
One-d	mensional rate-dependent theory with a yield threshold	177
10.6.1	Summary of the rate-dependent theory with a yield threshold	181
	Numer 10.5.1 10.5.2 One-di 10.6.1	 Numerical time-integration algorithm for rate-dependent plasticity 10.5.1 Time-integration procedure 10.5.2 Summary of time-integration algorithm for rate-dependent plasticity One-dimensional rate-dependent theory with a yield threshold 10.6.1 Summary of the rate-dependent theory with a yield threshold

11	Phys	sical basis of metal plasticity	182
	11.1	Introduction	182
	11.2	Slip systems. Resolved shear stress. Schmid's law	185
	11.3	Estimate for ideal shear strength $ au_i$	186
	11.4	Discrepancy between $ au_i$ and $ au_{ m cr}$, and the existence of dislocations	188
	11.5	Plastic deformation by dislocation glide	189
		11.5.1 Glide force acting on a dislocation	191
		11.5.2 Some other properties of dislocations	192
		Elastic strain energy of a dislocation	192
		Line tension of a dislocation	192
		Curvature of a dislocation under an applied shear stress	193
		A characteristic length scale for a dislocation under the	
		action of a resolved shear stress	194
	11.6	Strengthening mechanisms	194
		11.6.1 Intrinsic lattice resistance	196
		11.6.2 Solid solution strengthening	196
		11.6.3 Obstacle strengthening. The Orowan mechanism	197
		11.6.4 Strain-hardening	199
	11.7	Yield in polycrystals	201
	11.8	Grain-boundary strengthening. Hall-Petch effect	203
	11.9	Summary of the physical basis of plastic flow in metals	204

12 Three-dimensional small deformation theory of rate-independent plasticity 206 12.1 Introduction 206 12.2 Mises-Hill theory of rate-independent plasticity 206 12.3 Three-dimensional plasticity beyond small deformations 211 12.3.1 Rigid-plastic response 213 12.A Appendix: Derivation of the Mises-Hill theory 216 12.A.1 Kinematical assumptions 216 12.A.2 Rate of work per unit volume 216

-30

12.A.3	Constitutive equation for elastic response	217
12.A.4	Constitutive equations for plastic response	217
	Flow strength	219
	Mises yield condition. No-flow conditions. Consistency condition	220
	The flow rule	222

13 Three-dimensional rate-dependent plasticity 224 13.1 Kinematical assumptions 224 13.1.1 Rate of work per unit volume 225 13.1.2 Constitutive equation for elastic response 225 13.1.3 Constitutive equation for viscoplastic response 226 13.2 Summary of the Mises-Hill-type power-law rate-dependent theory 227 13.2.1 Power-law creep form for high temperatures 229

IV FRACTURE AND FATIGUE

14	Introduction to fracture mechanics			239	
	14.1	14.1 Introduction			
	14.1.1 Brittle and ductile fracture: local mechanisms versus global				
behavior			behavior	240	
	14.2 A fracture criterion for globally brittle fracture of a component		re criterion for globally brittle fracture of a component	242	
		14.2.1	Estimate for $\sigma_{ m local}$	243	
		14.2.2	Estimate for the ideal cleavage strength σ_c	245	
		14.2.3	A macroscopic fracture criterion	248	

15	Line	ar elas	itic fracture mechanics	251
	15.1	Introdu	iction	251
	15.2	Asymp	totic crack tip stress fields. Stress intensity factors	252
		15.2.1	Succinct summary of asymptotic crack tip fields	255
	15.3	Configu	uration correction factors	258
		15.3.1	Stress intensity factors for combined loading by superposition	259
	15.4	Limits t	o applicability of $K_{ m I}$ -solutions	260
		15.4.1	Limit to applicability of K_{I} -solutions because of the	
			asymptotic nature of the $K_{ m I}$ -stress fields	260
		15.4.2	Limit to applicability of $K_{\rm I}$ -solutions because of local	
			inelastic deformation	262
		15.4.3	Small-scale yielding (ssy)	264
	15.5	Criteric	n for initiation of crack extension	266

15.6	Fracture toughness testing	266
15.7	Plane strain fracture toughness data	273

16	Ene	276	
	16.1	Introduction	276
	16.2	Energy release rate	276
		16.2.1 Some preliminaries	276
		16.2.2 Definition of the energy release rate	277
	16.3	Griffith's fracture criterion	278
	16.4	Relationship between ${\cal G}$ and $K_{ m I},K_{ m II},$ and $K_{ m III}$	283
	16.5	Closing remarks	284

17 Fatigue

	-		
17.1	Introdu	uction	285
	17.1.1	Fatigue analysis methodologies	286
17.2	Defect	-free approach	288
	17.2.1	S-N curves	288
	17.2.2	Strain-life approach to design against fatigue failure	291
		High-cycle fatigue. Basquin's relation	292
		Low-cycle fatigue. Coffin-Manson relation	293
		Strain-life equation for both high-cycle and low-cycle fatigue	293
		Mean stress effects on fatigue	294
		Cumulative fatigue damage. Miner's rule	295
17.3	Defect	-tolerant approach	296
	17.3.1	Fatigue crack growth	296
	17.3.2	Engineering approximation of a fatigue crack growth curve	298
	17.3.3	Integration of crack growth equation	299

285

V VISCOELASTICITY

18	Linear viscoelasticity					
	18.1	Introdu	uction	307		
	18.2	Stress-	relaxation and creep	308		
		18.2.1	Stress-relaxation	309		
		18.2.2	Creep	311		
		18.2.3	Linear viscoelasticity	312		
		18.2.4	Superposition. Creep integral and stress-relaxation integral			
			forms of stress-strain relations	313		
	18.3	Standa	rd linear solid	315		
		18.3.1	Stress-relaxation	315		
		18.3.2	Creep	318		

	18.4	Power-law relaxation functions	321
	18.5	Correspondence principle	322
		18.5.1 Correspondence principle in one dimension	323
		18.5.2 Connection between $E_r(t)$ and $J_c(t)$ in Laplace transform	
		space	324
	18.6	Correspondence principles for structural applications	326
		18.6.1 Bending of beams made from linear viscoelastic materials	326
		Correspondence principle for bending of beams made from	
		a linear viscoelastic material	328
		18.6.2 Iorsion of shafts made from linear viscoelastic materials	331
		from a linear viscoelastic material	222
	107	Consolized Maxwell readel. Brancharting forms of the	332
	18.7	Generalized Maxwell model. Prony series form of the stress relevation function $F(t)$	222
	10.0	subscription function $E_{\tau}(t)$	333
	18.8	Ime-Integration procedure for linear viscoelasticity based on the	225
		generalized Maxwell model	335
19	Line	ear viscoelasticity under oscillatory strain and stress	340
	19.1	Introduction	340
		19.1.1 Oscillatory loads	340
		19.1.2 Storage compliance, loss compliance, and complex	
		compliance	342
		19.1.3 Storage modulus, loss modulus, and complex modulus	343
	19.2	Formulation for oscillatory response using complex numbers	344
		19.2.1 Energy dissipation under oscillatory conditions	346
	19.3	More on complex variable representation of linear viscoelasticity	349
		19.3.1 $E'(\omega), E''(\omega)$, and $\tan \delta(\omega)$ for the standard linear solid	350
20	Tem	perature dependence of linear viscoelastic response	355
	20.1	Dynamic mechanical analysis (DMA)	355
	20.2	Representative DMA results for amorphous polymers	355
	20.3	DMA plots for the semi-crystalline polymers	357
	20.0	Effect of temperature on $E(t)$ and $I(t)$ Time-temperature equivalence	e 358
	20.4	20.4.1 Shift factor. Williams-Landel-Ferry (WLF) equation	364
21	Thre	ee-dimensional linear viscoelasticity under	365
	21 1	Three dimensional constitutive equation for isotronic linear viscoelastic	ty 365
	∠1.1 21.2	Reundancyalue problem for isotropic linear viscoelasticity	367
	21.2	buildary-value problem for isotropic intera viscoerasticity	367
	21.A	Appendix. Correspondence principle in unree dimensions	507

VI RUBBER ELASTICITY

22	Rubber elasticity				
	22.1	Introdu	ction	373	
	22.1	Kinema	tics. Principal stretches	375	
	22.3	Incomr	pressibility constraint	376	
	22.4	Principa	al stresses. Rate of work per unit reference volume	377	
	22.5	Free-er	nergy balance for an elastic material	379	
	22.6 Free energy and principal stresses			380	
	22.7	22.7 Specialization of the free-energy function			
		22.7.1	Free energy motivated by statistical mechanical models of		
			entropic rubber elasticity	382	
		22.7.2	Gent free-energy function	384	
	22.8	Applica	ation of the neo-Hookean, Arruda–Boyce, and Gent free		
		energie	es to vulcanized natural rubber	385	
	22.9	Rubbe	r elasticity beyond principal stretches	389	
	22.A	A brief	discussion of the statistical mechanical basis for rubber elasticity	393	
		22.A.1	Change in entropy of a single chain	393	
		22.A.2	Free energy of an elastomeric network	397	
	22.B	Some	properties of the deformation gradient tensor ${f F}$	398	

VII CONTINUOUS-FIBER COMPOSITES

23	Continuous-fiber polymer-matrix composites				
	23.1	Introdu	uction	405	
	23.2	Reinfor	rcement fibers and polymer-matrix materials	408	
		23.2.1	Reinforcement fibers	408	
		23.2.2	Polymer-matrix materials	409	
	23.3	A lamir	na and a laminated composite	410	
	23.4	Anisoti	ropic elastic properties of a unidirectional lamina	410	
		23.4.1	Voigt notation	412	
		23.4.2	A unidirectional composite displays orthotropic symmetry	414	
		23.4.3	Engineering constants for an orthotropic material	415	
		23.4.4	Plane-stress relations for a unidirectional lamina	416	
		23.4.5	Off-axis response of a lamina	419	
			Transformation rules for vectors and tensors	419	
			Transformed elastic moduli	421	
			Compliance form and lamina engineering constants	422	
		23.4.6	Summary of the on-axis and off-axis response of a lamina	425	
			On-axis response of a lamina	425	
			Off-axis response of a lamina	425	

23.5	Classic	al lamination theory for thin plates	426	
	23.5.1	Kinematical assumptions of the classical Kirchhoff plate	120	
		theory	427	
	23.5.2	Constitutive equation for an anisotropic lamina in a		
		laminated plate	430	
	23.5.3	Laminate constitutive equations for force and moment		
		resultants	431	
		Constitutive equations for the force resultants	432	
		Constitutive equations for the moment resultants	433	
		Summary: Laminate constitutive equations	434	
		Inverted form of laminate constitutive equations	435	
	23.5.4	Symmetric laminates	437	
	23.5.5	In-plane loading of symmetric laminates	438	
	23.5.6	Some examples of symmetric laminates	440	
	23.5.7	Bending of symmetric laminates	442	
23.6	Failure of fiber-reinforced polymer composites			
	23.6.1	Failure modes in a unidirectional composite	445	
	23.6.2	Failure criteria for a unidirectional composite	448	
	23.6.3	Failure of a multi-directional laminate	451	
	23.6.4	Safety factor for first-ply-failure based on the Tsai-Wu failure		
		criterion	452	
	23.6.5	Some other considerations regarding failure of composites	454	
23.7	Closing	g remarks	455	

APPENDICES

Α	Thin-walled pressure vessels			
	A.1	Thin-walled spherical pressure vessels	459	
	A.2	Thin-walled cylindrical pressure vessels with capped ends	460	
В	Elas	stic bending of beams	462	
	B.1	Introduction	462	
	B.2	Kinematics. Strain-curvature relation	462	
	B.3	Relation between curvature and transverse displacement	465	
		B.3.1 Summary of kinematic relations	466	
	B.4	Forces and moments, sign convention	467	
	B.5	Balance of forces	468	
	B.6	Balance of moments	468	
		B.6.1 Summary of the equilibrium equations	469	
	B.7	Constitutive equation. Moment-curvature relation	469	
	B.8	Summary of beam equations	470	

B 9	Axial stress in the beam, neutral axis location	4/1
B 10	Deflection of beams	472
B 11	Example problems	473
B12	Discontinuous loading on beams, Singularity functions	477
D.12	Summary of some solutions to beam deflections	480
0.15	Summary of some solutions to beautiful	

0220

499

507

C Elastic buckling of columns482C.1 Introduction482C.2 Elastic buckling of a column483

Tors	490	
D.1	Introduction	490
D.2	Kinematics	490
D.3	Balance of moments in torsion	493
D.4	Constitutive equation. Torque-twist relation	493
D.5	Summary of governing equations for torsion of circular shafts	495
D.6	Shear stress in circular shafts	495
D.7	Rotation of shafts	496
	Tors D.1 D.2 D.3 D.4 D.5 D.6 D.7	Tors: of circular elastic shaftsD.1IntroductionD.2KinematicsD.3Balance of moments in torsionD.4Constitutive equation. Torque-twist relationD.5Summary of governing equations for torsion of circular shaftsD.6Shear stress in circular shaftsD.7Rotation of shafts

E Castigliano's theorems

	-		
E.1	Introduction		
	E.1.1	Elastic strain energy	499
	E.1.2	Complementary strain energy	499
	E.1.3	Potential of the load	500
E.2	Minim	um potential energy	500
E.3	Minim	um complementary potential energy	501
E.4	Expres	sions for structural mechanics problems	502
E.5	5 Example applications 5		

F Equations of isotropic linear elasticity in different coordinate systems

F.1	Equations in direct notation	507
F.2	Equations in a rectangular Cartesian coordinate system	508
F.3	Equations in a cylindrical coordinate system	511
F.4	Equations in a spherical coordinate system	514

	-	-
1	rit	
	14	
	2	1

G	Hardness of a material			518 519
	G.1 Definition of hardness and approximate relation to the yield strength of a material			
н	Stre	ess inte	ensity factors for some crack configurations	524
-	МА	TLAB	codes	533
	1.1	1D rat	e-independent plasticity	533
		1.1.1	Driver function ritinteg	533
		1.1.2	Rate-independent time integrator function main_ri()	534
		1.1.3	Sawtooth function cycle()	535
	1.2	1D rat	te-dependent plasticity	536
		1.2.1	Driver function rdtinteg	537
		1.2.2	Rate-dependent time integrator function main_rd()	538
		I.2.3	Rate-dependent plasticity residual function rdresid()	539
		1.2.4	Bounded interval Newton root finding function rtsafe()	540
	1.3	Lamir	nate calculator	542
		1.3.1	Driver file for Example 23.1 $ex23_1$	542
		1.3.2	Driver file for Example 23.2 $ex23_2$	543
		1.3.3	Laminate function laminate()	543
		1.3.4	Matrix output function out3()	550
		1.3.5	Rotation matrix construction function rotmat()	550
ge Ci	e Credits		551	
iogra	ography		554	
ex	X			562