# Quantum Theory for Chemical Applications

From Basic Concepts to Advanced Topics

JOCHEN AUTSCHBACH



# Contents

| Αŀ | ejace<br>obreviations<br>otation Used in This Book                                                                                                                                                                                                                                                                                                                                                                                                                     | Xi<br>XiX<br>XX                              |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| M  | otivation: Why It Is Important to Know What Quantum Theory Is About                                                                                                                                                                                                                                                                                                                                                                                                    | xxii                                         |
|    | PART I. BASIC THEORETICAL CONCEPTS                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |
| 1. | Vectors and Functions and Operators<br>Exercises                                                                                                                                                                                                                                                                                                                                                                                                                       | 3<br>11                                      |
| 2. | Classical Mechanics According to Newton and Hamilton Exercises                                                                                                                                                                                                                                                                                                                                                                                                         | 14<br>26                                     |
| 3. | <ul> <li>The Quantum Recipe</li> <li>3.1 The Postulates of Quantum Mechanics</li> <li>3.2 The Quantum Recipe (Position Representation, Stationary States)</li> <li>3.3 Matrix Representations of Quantum Operators</li> <li>3.4 The Variation Principle</li> <li>3.5 Major Differences between Classical and Quantum Mechanics, and the Heisenberg Uncertainty Relation</li> <li>3.6 Meow!</li> <li>Exercises</li> </ul>                                               | 27<br>28<br>42<br>43<br>45<br>47<br>49<br>53 |
| 4. | Atomic Units Exercises                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 56<br>58                                     |
| 5. | <ul> <li>A First Example: The "Particle in a Box" and Quantized Translational Motion</li> <li>5.1 Particle in a Box: One Dimension</li> <li>5.2 Particle in a Box: Two Dimensions</li> <li>5.3 Particle in a Box: Three Dimensions</li> <li>5.4 Application of the 1D PiaB to the Electronic Spectroscopy of Linear π-Conjugated Molecules</li> <li>5.5 Free Versus Confined Particles and the Tunneling Phenomenon</li> <li>5.6 Quantum Behavior Exercises</li> </ul> | 59<br>59<br>65<br>71<br>74<br>82<br>93<br>94 |
|    | PART II. ATOMIC, MOLECULAR, AND CRYSTAL ORBIT                                                                                                                                                                                                                                                                                                                                                                                                                          | TALS                                         |
| 6. | Hydrogen-like Atomic Wavefunctions: A First Sketch Exercises                                                                                                                                                                                                                                                                                                                                                                                                           | 99<br>106                                    |
| 7. | Many-electron Systems and the Pauli Principle 7.1 Electrostatic Forces and Potential Energies                                                                                                                                                                                                                                                                                                                                                                          | 109<br>109                                   |

## vi CONTENTS

|     | 7.2 Separation of Electronic and Nuclear Degrees of Freedom                            | 111        |
|-----|----------------------------------------------------------------------------------------|------------|
|     | 7.3 The Many-electron Hamiltonian                                                      | 113        |
|     | 7.4 Electron Correlation Versus Hartree Product                                        | 115        |
|     | 7.5 The Pauli Principle                                                                | 117        |
|     | 7.6 Slater Determinants and the Orbital Model                                          | 118        |
|     | 7.7 How to Create a Set of Orthonormal Orbitals                                        | 123<br>125 |
|     | Exercises                                                                              | 123        |
| 8.  | Self-consistent Field Orbital Methods                                                  | 128        |
|     | 8.1 The Energy Expectation Value Calculated with a Slater                              |            |
|     | Determinant                                                                            | 128        |
|     | 8.2 Hartree-Fock Theory                                                                | 134        |
|     | 8.3 The Self-consistent Field Cycle                                                    | 137        |
|     | 8.4 Orbital Energies                                                                   | 138        |
|     | 8.5 Spin-restricted Versus Spin-unrestricted Hartree-Fock                              | 139        |
|     | 8.6 Kohn-Sham Density Functional Theory (Very Briefly)                                 | 142        |
|     | 8.7 Ab Initio Versus Semiempirical Methods                                             | 147        |
|     | Exercises                                                                              | 149        |
| 9.  | From Atomic Orbitals to Molecular Orbitals and                                         |            |
|     | Chemical Bonds                                                                         | 150        |
|     | 9.1 An <i>Aufbau</i> Procedure for Atomic Orbitals                                     | 150        |
|     | 9.2 Molecular Orbitals Formed by Linear Combinations of                                |            |
|     | Basis Functions                                                                        | 154        |
|     | 9.3 Atomic Orbital-like Basis Functions                                                | 155        |
|     | 9.4 Non-AO Basis Sets                                                                  | 158        |
|     | 9.5 The HF Energy and the HF Equation in a Basis Set                                   | 159        |
|     | 9.6 Minimal Basis LCAO Calculations for H <sub>2</sub> <sup>+</sup> and H <sub>2</sub> | 165        |
|     | 9.7 Helium, and the Slater Screening Rules Revisited                                   | 176        |
|     | 9.8 The Nature of the Covalent Bond and the Role of Kinetic Energy                     | 177        |
|     | 9.9 Pauli Repulsion                                                                    | 182        |
|     | 9.10 A Typical Computational Chemistry Workflow                                        | 182        |
|     | 9.11 AO Basis Set-Dependent Charge and Bond-order Definitions                          | 184        |
|     | Exercises                                                                              | 185        |
| 10. | Orbital-based Descriptions of Electron Configurations, Ionization,                     |            |
|     | Excitation, and Bonding                                                                | 188        |
|     | 10.1 Constructing an MO Diagram: Qualitative Aspects                                   | 189        |
|     | 10.2 Koopmans' Theorem                                                                 | 200        |
|     | 10.3 Orbital Energies Versus Total Energies: A Transition Metal                        |            |
|     | Example                                                                                | 202        |
|     | 10.4 Electronic Excitations Versus Orbital Energy Gaps Versus                          |            |
|     | Fundamental Gaps                                                                       | 205        |
|     | 10.5 Localized Molecular Orbitals and the Lewis Structure                              | 207        |
|     | 10.6 Delocalized Versus Localized Bonding                                              | 208        |
|     | 10.7 Calculating Localized Molecular Orbitals from<br>Canonical Molecular Orbitals     | 210        |
|     | Exercises                                                                              | 210<br>216 |
|     |                                                                                        |            |
| 11. | Recap: Molecular Orbitals and Common Misconceptions                                    | 217        |
|     | 11.1 The Appearance of Molecular Orbitals as Linear Combinations                       |            |
|     | of Atomic Orbitals in Molecular Electronic Structure Theory                            | 217        |
|     | 11.2 Avoiding Common Misconceptions about Molecular Orbitals                           | 225        |

| 12. | Approximate Molecular Orbital Theory: The Hückel/                    |     |
|-----|----------------------------------------------------------------------|-----|
|     | Tight-binding Model                                                  | 231 |
|     | 12.1 Setup of the Basic HMO Model                                    | 231 |
|     | 12.2 HMO Treatment of Ethene                                         | 232 |
|     | 12.3 HMO Models for Linear and Cyclic Polyenes: Hexatriene           |     |
|     | Versus Benzene                                                       | 234 |
|     | 12.4 Binding Energies, Partial Charges, and Bond Orders              | 237 |
|     | 12.5 What Is So Special about Benzene?                               | 239 |
|     | Exercises                                                            | 245 |
| 13. | Band Structure Theory for Extended Systems                           | 246 |
|     | 13.1 The Electron Gas                                                | 246 |
|     | 13.2 Periodic Potentials and Bloch Functions in One Dimension        | 252 |
|     | 13.3 Band Structure for One-dimensional Periodic Systems from Hückel |     |
|     | Theory                                                               | 258 |
|     | 13.4 The Reciprocal Lattice                                          | 262 |
|     | 13.5 More Than One Dimension                                         | 265 |
|     | 13.6 Three-dimensional Periodic Solids: Metals Versus Semi-metals    | 260 |
|     | Versus Insulators                                                    | 269 |
|     | 13.7 Band Structure Analysis: Orbital Populations, Projected         | 274 |
|     | Density of States, and Crystal Overlap Populations Exercises         | 274 |
|     | LACICISCS                                                            | 270 |
|     | DADELLA DA OLO CONCEDENCO DE ONANTESE                                |     |
|     | PART III. BASIC CONCEPTS OF QUANTUM                                  |     |
|     | THEORY—CONTINUED                                                     |     |
| 14. | Quantized Vibrational Motion                                         | 281 |
|     | 14.1 The Harmonic Oscillator                                         | 281 |
|     | 14.2 Vibrational Spectroscopy and the Morse Potential                | 287 |
|     | 14.3 Nuclear Vibrations in Polyatomic Molecules                      | 292 |
|     | Exercises                                                            | 304 |
| 1 = | Quantized Rotational Motion in a Plane                               | 306 |
| 15. | 15.1 Perimeter Model                                                 | 306 |
|     | 15.1 Fermieter Model 15.2 Hindered Rotations                         | 310 |
|     | Exercises                                                            | 312 |
|     |                                                                      |     |
| 16. | Angular Momentum and Rotational Motion in Three Dimensions           | 313 |
|     | 16.1 Angular Momentum                                                | 313 |
|     | 16.2 Rigid Rotor: Three Dimensions                                   | 324 |
|     | 16.3 Rotational and Ro-vibrational Spectroscopy                      | 325 |
|     | Exercises                                                            | 327 |
| 17. | Hydrogen-like Atoms                                                  | 328 |
|     | 17.1 The Hamiltonian and Separation of Variables                     | 328 |
|     | 17.2 Solution of the Radial Equation                                 | 330 |
|     | 17.3 The Electronic States of Hydrogen-like Atoms: Symmetry,         |     |
|     | Degeneracy, and Radial Densities                                     | 333 |
|     | 17.4 Visualizing the Wavefunctions of Hydrogen-like Atoms            | 336 |
| 19  | Particle in a Cylinder, in a Sphere, and on a Helix                  | 340 |
| 19. | 18.1 Particle in a Cylinder                                          | 340 |
|     | 18.2 Particle in a Sphere                                            | 347 |
|     | IVID I CALLOND III COPILOID                                          | フェノ |

### viii contents

|     | 18.3 Particle on a Helix<br>Exercises                                                                                                                                                                                                                                                                                                                                           | 352<br>355                                                  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 19. | Electron Spin and General Angular Momenta 19.1 The discovery of the electron spin 19.2 The Operators for a Single-electron Spin 19.3 Many-electron Spin Functions, and Hund's Rule 19.4 Generalized Angular Momentum and Ladder Operators 19.5 Addition of Angular Momenta Exercises                                                                                            | 356<br>356<br>358<br>360<br>364<br>367<br>374               |
|     | PART IV. ADVANCED TOPICS                                                                                                                                                                                                                                                                                                                                                        |                                                             |
| 20. | Post-Hartree-Fock Methods and Electron Correlation: A Very Brief Overview  20.1 Static and Dynamic Correlation  20.2 Configuration Interaction  20.3 Truncated CI and the Problem with Size Consistency and Size Extensitivity  20.4 Coupled-cluster Methods  20.5 Multireference Methods  20.6 Minimal Basis CI Calculation for H <sub>2</sub> 20.7 Summary                    | 379<br>379<br>380<br>385<br>388<br>391<br>392<br>398        |
| 21. | Exercises  The One-electron Quantum Hamiltonian in the Presence of EM Fields  21.1 Maxwell's Equations and EM Waves  21.2 Electromagnetic Potentials  21.3 The Hamilton Function for a Charged Particle and EM Fields  21.4 Field-dependent One-electron Operators  Exercises                                                                                                   | 400<br>400<br>408<br>410<br>414<br>435                      |
| 22. | Static Perturbation Theory and Derivative Properties  22.1 Perturbation Series  22.2 Energy Perturbation in First Order  22.3 Perturbations Beyond the First-order Energy Correction  22.4 The MP2 Correlation Energy  22.5 Bilinear (Double) Perturbations  22.6 Perturbation Theory for Degenerate States  22.7 Perturbation Theory for Approximate Methods  Exercises        | 436<br>436<br>438<br>443<br>447<br>451<br>454<br>460<br>469 |
| 23. | Dynamic Fields and Response Properties 23.1 Transition Probabilities 23.2 Electronic Absorption Intensities 23.3 Electronic Circular Dichroism 23.4 Response Functions and the Kramers-Kronig Transformations 23.5 Complex Dynamic Polarizability 23.6 Linear Response Functions 23.7 The Quasi-energy Formulation 23.8 Linear Response Functions with Excited-state Broadening | 473<br>473<br>481<br>489<br>497<br>504<br>510<br>515        |

|     | <ul> <li>23.9 An Alternative Derivation of the Linear Response Function</li> <li>23.10 Complex Optical Rotation</li> <li>23.11 Time-dependent HF and KS Linear Response</li> <li>23.12 Nonlinear Response Functions, Two-photon Absorption, and a Zoo of Properties</li> <li>Exercises</li> </ul>                                                                                                                                                               | 522<br>525<br>531<br>542<br>553                                    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 24. | From Schrödinger to Einstein and Dirac: Relativistic Effects  24.1 Why Do We Need Einstein's Relativity in Chemistry?  24.2 Special Relativity  24.3 Four-component and Two-component Relativistic One-electron Hamiltonians  24.4 Relativity and Heavy Atoms  24.5 SO Coupling and SO Splitting of Atomic Terms  24.6 Intersystem Crossing and Phosphorescence  24.7 The X2C One-electron Hamiltonian  24.8 Molecular Properties and Picture Change  Exercises | 555<br>555<br>556<br>558<br>567<br>571<br>575<br>576<br>589<br>591 |
|     | PART V. APPENDIX                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |
| A.  | Complex Numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 595                                                                |
| В.  | Linear Algebra Essentials  B.1 Matrices and Vectors  B.2 Special Types of Matrices and Matrix Operations  B.3 Determinants  B.4 Linear Equation Systems  B.5 Eigenvalues and Eigenvectors, and Functions of Matrices  B.6 The Scalar Product and Basis Vectors  B.7 Basis and Coordinate Transformations  B.8 Functions Versus Vectors  B.9 Generalized Eigenvalue Problem                                                                                      | 597<br>597<br>599<br>601<br>603<br>605<br>610<br>611<br>615        |
| C.  | Some Useful Relationships Involving Functions, Vectors, Vector Fields, and the Operator $\nabla$                                                                                                                                                                                                                                                                                                                                                                | 619                                                                |
| D.  | One- and Two-center Integrals with 1s Slater-type Functions                                                                                                                                                                                                                                                                                                                                                                                                     | 626                                                                |
| E.  | Point Group Symmetry E.1 Molecular Symmetry Point Groups and Character Tables E.2 Symmetry-allowed Versus Symmetry-forbidden Transitions E.3 Symmetry-adapted Molecular Vibrations E.4 Some Important Results from Symmetry Group Representation Theory E.5 The Symmetry Projector E.6 Symmetry-adapted Orbitals                                                                                                                                                | 632<br>632<br>636<br>639<br>643<br>645                             |
| E   | Encombles of Electrons and Quantum Statistics                                                                                                                                                                                                                                                                                                                                                                                                                   | 650                                                                |

### X CONTENTS

| G. Gaussian and cgs Units           | 657         |
|-------------------------------------|-------------|
| H. Solutions for Selected Exercises | 659         |
| Further Reading                     | 713         |
| Acknowledgements                    | <b>7</b> 17 |
| Index                               | 719         |