Deep Learning with R

FRANÇOIS CHOLLET WITH TOMASZ KALINOWSKI AND J.J. ALLAIRE

contents

preface xii acknowledgments xiv about this book xv about the authors xviii

What is deep learning? 1

- Alexandre

1.1 Artificial intelligence, machine learning, and deep learning 2

Artificial intelligence 2 • Machine learning 3 • Learning rules and representations from data 4 • The "deep" in "deep learning" 7 • Understanding how deep learning works, in three figures 8 • What deep learning has achieved so far 10 Don't believe the short-term hype 11 • The promise of AI 12

1.2 Before deep learning: A brief history of machine learning 13

Probabilistic modeling 13 • Early neural networks 13 Kernel methods 14 • Decision trees, random forests, and gradient-boosting machines 15 • Back to neural networks 16 What makes deep learning different? 17 • The modern machine learning landscape 17

CONTENTS

1.3 Why deep learning? Why now? 20

Hardware 20 • Data 21 • Algorithms 22 • A new wave of investment 22 • The democratization of deep learning 23 Will it last? 24

The mathematical building blocks of neural networks 26

- 2.1 A first look at a neural network 27
 - 2.2 Data representations for neural networks 31
 - Scalars (rank 0 tensors) 31 Vectors (rank 1 tensors) 31 Matrices (rank 2 tensors) 32 • Rank 3 and higher-rank tensors 32 • Key attributes 33 • Manipulating tensors in R 34 • The notion of data batches 35 • Real-world examples of data tensors 35 • Vector data 35 • Time-series data or sequence data 36 • Image data 36 • Video data 37
- 2.3 The gears of neural networks: Tensor operations 37 Element-wise operations 38 • Broadcasting 40 • Tensor product 41 • Tensor reshaping 43 • Geometric interpretation of tensor operations 44 • A geometric interpretation of deep learning 47
- 2.4 The engine of neural networks: Gradient-based optimization 48

What's a derivative? 49 • Derivative of a tensor operation: The gradient 50 • Stochastic gradient descent 51 • Chaining derivatives: The backpropagation algorithm 54

2.5 Looking back at our first example 59
 Reimplementing our first example from scratch in TensorFlow 61
 Running one training step 63 • The full training loop 65
 Evaluating the model 66

Introduction to Keras and TensorFlow 68

- 3.1 What's TensorFlow? 69
- 3.2 What's Keras? 69
- 3.3 Keras and TensorFlow: A brief history 71
- 3.4 Python and R interfaces: A brief history 71
- 3.5 Setting up a deep learning workspace 72 Installing Keras and TensorFlow 73
- 3.6 First steps with TensorFlow 74 TensorFlow tensors 74

3.7 Tensor attributes 75

Tensor shape and reshaping 77 • Tensor slicing 78 • Tensor broadcasting 79 • The tf module 80 • Constant tensors and variables 81 • Tensor operations: Doing math in TensorFlow 82 A second look at the GradientTape API 83 • An end-to-end example: A linear classifier in pure TensorFlow 84

3.8 Anatomy of a neural network: Understanding core Keras APIs 89

Layers: The building blocks of deep learning 89 • From layers to models 94 • The "compile" step: Configuring the learning process 95 • Picking a loss function 98 • Understanding the fit() method 99 • Monitoring loss and metrics on validation data 99 • Inference: Using a model after training 101

4 Getting started with neural networks: Classification and regression 103

4.1 Classifying movie reviews: A binary classification example 105 The IMDB dataset 105 • Preparing the data 107 • Building your model 108 • Validating your approach 110 • Using a trained model to generate predictions on new data 113 • Further experiments 113 • Wrapping up 113

4.2 Classifying newswires: A multiclass classification example 114

The Reuters dataset 114 • Preparing the data 116 • Building your model 116 • Validating your approach 117 • Generating predictions on new data 119 • A different way to handle the labels and the loss 120 • The importance of having sufficiently large intermediate layers 120 • Further experiments 121 Wrapping up 121

4.3 Predicting house prices: A regression example 122 The Boston housing price dataset 122 • Preparing the data 123 Building your model 123 • Validating your approach using K-fold validation 124 • Generating predictions on new data 128 Wrapping up 128

Fundamentals of machine learning 130

- 5.1 Generalization: The goal of machine learning 130
 Underfitting and overfitting 131 The nature of generalization in deep learning 136
- 5.2 Evaluating machine learning models 142
 Training, validation, and test sets 142 Beating a common-sense baseline 145 Things to keep in mind about model evaluation 146

- 5.3 Improving model fit 146 Tuning key gradient descent parameters 147 • Leveraging better
 - architecture priors 149 Increasing model capacity 150
- 5.4 Improving generalization 152 Dataset curation 152 • Feature engineering 153 • Using early stopping 154 • Regularizing your model 155

The universal workflow of machine learning 166

- 6.1 Define the task 168
 Frame the problem 168 Collect a dataset 169 Understand your data 173 Choose a measure of success 173
- 6.2 Develop a model 174

Prepare the data 174 • Choose an evaluation protocol 175 Beat a baseline 176 • Scale up: Develop a model that overfits 177 • Regularize and tune your model 177

6.3 Deploy the model 178

Explain your work to stakeholders and set expectations 178 • Ship an inference model 179 • Monitor your model in the wild 182 Maintain your model 183

7 Working with Keras: A deep dive 185

- 7.1 A spectrum of workflows 186
- 7.2 Different ways to build Keras models 186

The Sequential model187 • The Functional API189Subclassing the Model class196 • Mixing and matching differentcomponents199 • Remember: Use the right tool for the job200

- 7.3 Using built-in training and evaluation loops 201
 Writing your own metrics 202 Using callbacks 204 Writing your own callbacks 205 Monitoring and visualization with TensorBoard 208
- 7.4 Writing your own training and evaluation loops 210 Training vs. inference 210 • Low-level usage of metrics 211 A complete training and evaluation loop 212 • Make it fast with tf_function() 215 • Leveraging fit() with a custom training loop 216

Introduction to deep learning for computer vision 220

8.1 Introduction to convnets 221

The convolution operation 223 • The max-pooling operation 228

- 8.2 Training a convnet from scratch on a small dataset 230 The relevance of deep learning for small data problems 230 Downloading the data 231 • Building the model 234 • Data preprocessing 235 • Using data augmentation 241
- 8.3 Leveraging a pretrained model 245 Feature extraction with a pretrained model 246 • Fine-tuning a pretrained model 254

Advanced deep learning for computer vision 258

- 9.1 Three essential computer vision tasks 259
- 9.2 An image segmentation example 260
- 9.3 Modern convnet architecture patterns 269
 Modularity, hierarchy, and reuse 269 Residual connections 272 • Batch normalization 275 • Depthwise separable convolutions 278 • Putting it together: A mini Xception-like model 280
- 9.4 Interpreting what convnets learn 282 Visualizing intermediate activations 283 • Visualizing convnet filters 289 • Visualizing heatmaps of class activation 294

Deep learning for time series 301

- 10.1 Different kinds of time-series tasks 301
- 10.2 A temperature-forecasting example 302

Preparing the data 306 • A common-sense, non-machine learning baseline 310 • Let's try a basic machine learning model 311 Let's try a 1D convolutional model 314 • A first recurrent baseline 316

- 10.3 Understanding recurrent neural networks 317 A recurrent layer in Keras 320
- 10.4 Advanced use of recurrent neural networks 324
 Using recurrent dropout to fight overfitting 324 Stacking recurrent layers 327 Using bidirectional RNNs 329
 Going even further 332

Deep learning for text 334

- 11.1 Natural language processing: The bird's-eye view 334
 - 11.2 Preparing text data 336
 - Text standardization 337 Text splitting (tokenization) 338 Vocabulary indexing 339 • Using layer_text_vectorization 340

CONTENTS

11.3 Two approaches for representing groups of words: Sets and sequences 344

> Preparing the IMDB movie reviews data 345 • Processing words as a set: The bag-of-words approach 347 • Processing words as a sequence: The sequence model approach 355

11.4 The Transformer architecture 366

Understanding self-attention 366 • Multi-head attention 371 The Transformer encoder 372 • When to use sequence models over bag-of-words models 381

11.5 Beyond text classification: Sequence-to-sequence learning 382

A machine translation example 383 • Sequence-to-sequence learning with RNNs 387 • Sequence-to-sequence learning with Transformer 392

Generative deep learning 399

12.1 Text generation 401

A brief history of generative deep learning for sequence generation 401 • How do you generate sequence data? 402 The importance of the sampling strategy 402 • Implementing text generation with Keras 404 • A text-generation callback with variable-temperature sampling 408 • Wrapping up 413

12.2 DeepDream 414

Implementing DeepDream in Keras 415 • Wrapping up 421

12.3 Neural style transfer 422

The content loss 423 • The style loss 424 • Neural style transfer in Keras 424 • Wrapping up 431

- 12.4 Generating images with variational autoencoders 432
 Sampling from latent spaces of images 432 Concept vectors for image editing 433 • Variational autoencoders 434
 Implementing a VAE with Keras 436 • Wrapping up 442
- 12.5 Introduction to generative adversarial networks 442

 A schematic GAN implementation 443 A bag
 of tricks 444 Getting our hands on the CelebA dataset 445
 The discriminator 447 The generator 447 The adversarial
 network 448 Wrapping up 452

\sim Best practices for the real world 454

13.1 Getting the most out of your models 455
 Hyperparameter optimization 455 • Model ensembling 462

13.2 Scaling-up model training 464 Speeding up training on GPU with mixed precision 465 Multi-GPU training 467 • TPU training 471

Conclusions 473

14.1 Key concepts in review 474

Various approaches to AI 474 • What makes deep learning special within the field of machine learning 474 • How to think about deep learning 475 • Key enabling technologies 476 • The universal machine learning workflow 477 • Key network architectures 478 • The space of possibilities 482

14.2 The limitations of deep learning 484

The risk of anthropomorphizing machine learning models 485 Automatons vs. intelligent agents 487 • Local generalization vs. extreme generalization 488 • The purpose of intelligence 490 Climbing the spectrum of generalization 491

- 14.3 Setting the course toward greater generality in AI 492
 On the importance of setting the right objective: The shortcut rule 492 A new target 494
- 14.4 Implementing intelligence: The missing ingredients 495
 Intelligence as sensitivity to abstract analogies 496 The two poles
 of abstraction 497 The two poles of abstraction 500 The
 missing half of the picture 500

14.5 The future of deep learning 501

Models as programs 502 • Machine learning vs. program synthesis 503 • Blending together deep learning and program synthesis 503 • Lifelong learning and modular subroutine reuse 505 • The long-term vision 506

- 14.6 Staying up-to-date in a fast-moving field 507
 Practice on real-world problems using Kaggle 508 Read about the latest developments on arXiv 508 • Explore the Keras ecosystem 508
- 14.7 Final words 509

appendix Python primer for R users 511

index 535