Mathematical Logic through Python

YANNAI A. GONCZAROWSKI

Harvard University

NOAM NISAN Hebrew University of Jerusalem

Contents

	Prefe	ace	<i>page</i> xi
0	Intro	duction and Overview	1
	0.1	Our Final Destination: Gödel's Completeness Theorem	2
	0.2	Our Pedagogical Approach	4
	0.3	How We Travel: Programs That Handle Logic	5
	0.4	Our Roadmap	8
Part I	Proposi	itional Logic	
1	Propositional Logic Syntax		13
	1.1	Propositional Formulas	13
	1.2	Parsing	18
	1.3	Infinite Sets of Formulas	21
	1.A	Optional Reading: Polish Notations	22
2	Propositional Logic Semantics		24
	2.1	Detour: Semantics of Programming Languages	24
	2.2	Models and Truth Values	25
	2.3	Truth Tables	28
	2.4	Tautologies, Contradictions, and Satisfiability	30
	2.5	Synthesis of Formulas	31
	2.A	Optional Reading: Conjunctive Normal Form	33
	2.B	Optional Reading: Satisfiability and Search Problems	35
3	Logical Operators		41
	3.1	More Operators	41
	3.2	Substitutions	43
	3.3	Complete Sets of Operators	46
	3.4	Proving Incompleteness	49
4	Proof by Deduction		53
	4.1	Inference Rules	53
	4.2	Specializations of an Inference Rule	56
	4.3	Deductive Proofs	59

	4.4 Practice Proving	64	
	4.5 The Soundness Theorem	66	
5	Warking with Droofs	(0	
5	Working with Proofs 5.1 Using Lemmas	69 69	
	5.1 Using Lemmas5.2 Modus Ponens	73	
	5.3 The Deduction Theorem	76	
	5.4 Proofs by Way of Contradiction	70 79	
6	The Tautology Theorem and the Completeness of Propositional Logic	84	
-	6.1 Our Axiomatic System	84	
	6.2 The Tautology Theorem	86	
	6.3 The Completeness Theorem for Finite Sets	92	
	6.4 The Compactness Theorem and the Completeness Theorem for Infinite Sets	94	
	6.A Optional Reading: Adding Additional Operators	97	
	6.B Optional Reading: Other Axiomatic Systems	101	
Part II	Predicate Logic		
7	Predicate Logic Syntax and Semantics	109	
	7.1 Syntax	110	
	7.2 Semantics	121	
8	Getting Rid of Functions and Equality	129	
	8.1 Getting Rid of Functions	129	
	8.2 Getting Rid of Equality	138	
9	Deductive Proofs of Predicate Logic Formulas	143	
	9.1 Example of a Proof	144	
	9.2 Schemas	145	
	9.3 Proofs	160	
	9.4 Getting Rid of Tautology Lines	171	
10	Working with Predicate Logic Proofs	178	
	10.1 Our Axiomatic System	178	
	10.2 Syllogisms	184	
	10.3 Some Mathematics	195	
11	The Deduction Theorem and Prenex Normal Form	211	
	11.1 The Deduction Theorem	211	
	11.2 Prenex Normal Form	215	
12	The Completeness Theorem		
	12.1 Deriving a Model or a Contradiction for a Closed Set	231 236	
	12.2 Closing a Set	240	

ix

	12.3 The Completeness Theorem	252
	12.4 The Compactness Theorem and the "Provability" Version of the Completeness Theorem	253
13	Sneak Peek at Mathematical Logic II: Gödel's Incompleteness Theorem	256
	13.1 Complete and Incomplete Theories	256
	13.2 Gödel Numbering	258
	13.3 Undecidability of the Halting Problem	260
	13.4 The Incompleteness Theorem	262
Cheatsheet: Axioms and Axiomatic Inference Rules Used in This Book		

an a a sina sinakaka

www.r= case = example address

** ax xi

Index	26
Index	