THE STATISTICAL MECHANICS OF IRREVERSIBLE PHENOMENA

PIERRE GASPARD

Université Libre de Bruxelles

Contents

Pre	face	Ce .			
l	Ther	modyna	amics	1	
	1.1	Gener	alities	1	
	1.2	Energy	y and Other Conserved Quantities	2	
	1.3	Entrop	by	4	
		1.3.1	Equilibrium Macrostates	4	
		1.3.2	Nonequilibrium Macrostates	6	
	1.4	Therm	nodynamics in Continuous Media	8	
		1.4.1	Balance Equations	8	
		1.4.2	Local Thermodynamic Equilibrium and Consequences	10	
		1.4.3	Equilibrium and Nonequilibrium Constitutive Relations	12	
	1.5	Hydro	dynamics and Chemohydrodynamics	16	
		1.5.1	Hydrodynamics in One-Component Fluids	16	
		1.5.2	Chemohydrodynamics in Multicomponent Fluids	16	
	1.6	Hydro	dynamic Modes of Relaxation to Equilibrium	17	
		1.6.1	Hydrodynamic Modes in One-Component Fluids	17	
		1.6.2	The Relaxation Modes in Diffusion–Reaction Systems	19	
	1.7	Noneg	uilibrium Steady States	20	
		1.7.1	From Local to Global Affinities	20	
		1.7.2	Diffusion	22	
		1.7.3	Ohm's Law for Electric Resistance	23	
		1.7.4	Electric Circuits	25	
	1.8	Reacti	on Networks	26	
		1.8.1	Flow Reactors	27	
		1.8.2	Stoichiometric Analysis of Reaction Networks	30	
	1.9	Dissip	ative Dynamics and Structures	33	
	1.10	Engine	es	35	

viii Contents

			Carnot Heat Engine	36 37
	1 11	Open	2 Isothermal Engines Working on Potential Differences	40
		•		
2			lechanics	41
	2.1	Introd		41
	2.2		cal Mechanics	43
		2.2.1	The Quantum Roots of Classical Mechanics	43
		2.2.2		43
		2.2.3	•	44
		2.2.4	· · · · · · · · · · · · · · · · · · ·	46
		2.2.5	•	47
		2.2.6	Dynamical Stability or Instability	49
		2.2.7	Symmetries of Hamiltonian Dynamics	51
	2.3		illian Dynamics	54
		2.3.1	Introduction to Statistical Ensembles	54
		2.3.2	•	57
		2.3.3	Liouvillian Dynamics in Autonomous Systems	58
		2.3.4	Time-Reversal Symmetry of Liouville's Equation	59
		2.3.5	BBGKY Hierarchy	59
	2.4	Ergodi	ic Properties	62
		2.4.1	Time Average	62
		2.4.2	Ergodicity	64
		2.4.3	Dynamical Mixing	66
		2.4.4	Pollicott-Ruelle Resonances	67
	2.5	Equilil	brium Statistical Ensembles	69
		2.5.1	Equilibrium Systems under Different Conditions	69
		2.5.2	Detailed Balance	72
	2.6	Noneq	uilibrium Statistical Ensembles	74
		2.6.1	Symmetry Breaking by the Selection of Initial Conditions	75
		2.6.2	Systems Evolving from Nonequilibrium Initial	
			Macrostates	78
		2.6.3	Systems in Nonequilibrium Steady Macrostates	79
	2.7	Entrop	y	81
		2.7.1	Coarse Graining	81
		2.7.2	Interpretation	84
		2.7.3	Coentropy	84
		2.7.4	Further Coarse Graining	85
		2.7.5	Dynamical Mixing and Entropy Time Evolution	85
		2.7.6	Entropy Production	86

Contents ix

	2.8	Linear	Response Theory	87
		2.8.1	Response Function and Dynamical Susceptibility	87
		2.8.2	Electric Conductivity	91
		2.8.3	Onsager–Casimir Reciprocal Relations	92
		2.8.4	Fluctuation-Dissipation Theorem	93
	2.9	Project	tion-Operator Methods	95
		2.9.1	Zwanzig Projection-Operator Method	95
		2.9.2	Mori Projection-Operator Method	96
3	Hyd	rodynan	nics	99
	3.1	Noneq	uilibrium Statistical Mechanics and Hydrodynamics	99
	3.2	Multic	omponent Normal Fluids	101
		3.2.1	Microscopic Densities and Balance Equations	101
		3.2.2	Time Evolution	102
		3.2.3	Local Equilibrium Distribution	103
		3.2.4	Time Evolution of the Local Equilibrium Distribution	105
		3.2.5	Entropy Production and Dissipative Current Densities	107
		3.2.6	Local Thermodynamics	109
		3.2.7	Dissipativeless Time Evolution	110
		3.2.8	Dissipative Time Evolution	111
		3.2.9	Green-Kubo Formulas for the Transport Coefficients	115
			Dissipative Hydrodynamic Equations	117
	3.3	Phases	of Matter with Broken Continuous Symmetries	118
		3.3.1	Continuous Symmetry Breaking and Long-Range Order	118
		3.3.2	Nambu–Goldstone Modes	119
		3.3.3	Microscopic Order Fields	121
		3.3.4	Local Equilibrium Approach	123
		3.3.5	Liquid Crystals	128
		3.3.6	Crystals	130
	3.4	Interfa	ces and Boundary Conditions	139
		3.4.1	Interfacial Phenomena	139
		3.4.2	Partial Slip Boundary Conditions on the Velocity Field	140
		3.4.3	Microscopic Expression for the Sliding Friction	
			Coefficient	141
	3.5		r Aspects of Microscopic Hydrodynamics	142
		3.5.1	Hydrodynamic Long-Time Tails and Their Consequences	142
		3.5.2	Hydrodynamics in Low-Dimensional Systems	144
4			rocesses	147
	4.1	Introdu		147
	4.2	The Jo	int Probability Distribution of the Stochastic Process	150

x Contents

	4.3	Correl	ation and Spectral Functions	153
	4.4		te-State Markov Processes	154
		4.4.1	Master Equation	154
		4.4.2	Spectral Theory	157
		4.4.3	= -	158
		4,4.4	Entropy Production	159
		4.4.5	Network Theory and Cycles	163
		4.4.6	Examples	166
	4.5	Contin	nuous-State Markov Processes	174
		4.5.1	Generalities	174
		4.5.2	Advection-Diffusion Processes	175
		4.5.3	Stochastic Differential Equations	176
		4.5.4	Jump Processes	177
		4.5.5	Advection-Jump Processes	178
		4.5.6	Spectral Theory	179
		4.5.7	Reversible Continuous-State Markov Processes	180
	4.6	Weak-	Noise Limit in Markov Processes	181
		4.6.1	From Discrete- to Continuous-State Processes	181
		4.6.2	Semideterministic Approximation	182
		4.6.3	Spectral Theory in the Weak-Noise Limit	184
	4.7	Lange	vin Stochastic Processes	186
		4.7.1	Langevin Equation for Brownian Motion	186
		4.7.2	Kramers' Master Equation	190
		4.7.3	Entropy Production of Brownian Motion	191
		4.7.4	Noisy Electric Circuits	193
	4.8	Friction	on in Systems with Slow and Fast Degrees of Freedom	195
		4.8.1	General Formulation	196
		4.8.2	The Case of Brownian Motion	198
5	Fluc	tuation	Relations for Energy and Particle Fluxes	202
	5.1	Micro	reversibility Out of Equilibrium	202
	5.2	Fluctu	nation Relations for Time-Dependent Systems	203
		5.2.1	Systems Subjected to Time-Dependent Forcing	203
		5.2.2	Nonequilibrium Work Fluctuation Relation	206
		5.2.3	Jarzynski's Equality and Clausius' Inequality	207
		5.2.4	Free-Energy Measurements in Biomolecules	209
		5.2.5	Electromagnetic Heating of Microplasmas	210
		5.2.6	Energy and Angular Momentum Transfers	213
		5.2.7	Nonequilibrium Work Fluctuation Relation in a	
			Magnetizing Field	214

Contents xi

5.3	Fluctu	ation Relation for Currents in Hamiltonian Systems	215
	5.3.1	Open System in Contact with Reservoirs	215
	5.3.2	Measuring Energy and Particle Fluxes	217
	5.3.3	Fluctuation Relation for the Global Currents	219
	5.3.4	Cumulant Generating Function and Full Counting	
		Statistics	221
	5.3.5	Symmetry Relation for the Cumulant Generating	
		Function	223
5.4	Accor	d with the Second Law of Thermodynamics	224
	5.4.1	Entropy Production	224
	5.4.2	Fluctuation Relation for Nonequilibrium Directionality	226
	5.4.3	Timescale for the Emergence of Thermodynamic	
		Behavior	227
	5.4.4	Entropy Production and Current Fluctuations	228
	5.4.5	Thermodynamic Efficiencies	229
	5.4.6	Loose versus Tight Coupling between Currents	230
	5.4.7	Fluctuation Relation for Paths and Entropy Production	231
5.5	Linear	and Nonlinear Response Properties	233
	5.5.1	Response Coefficients	233
	5.5.2	Implications for the Cumulants at Equilibrium	234
	5.5.3	Linear Response Properties	234
	5.5.4	Nonlinear Response Properties at Second Order	235
	5.5.5	Nonlinear Response Properties at Third Order	235
	5.5.6	Nonlinear Response Properties at Higher Orders	236
	5.5.7	Odd versus Even Cumulants	238
	5.5.8	Current Rectification	239
5.6	Fluctu	ation Relation for Currents in a Magnetizing Field	239
	5.6.1	Microreversibility for Open Systems in a Magnetizing	
		Field	239
	5.6.2	Fluctuation Relation for the Global Currents	240
	5.6.3	Transport Properties in a Magnetizing Field	241
	5.6.4	Entropy Production in a Magnetizing Field	245
5.7	Fluctu	nation Relation for Currents in Stochastic Processes	246
	5.7.1	Formulation	246
	5.7.2	Hill-Schnakenberg Cycle Decomposition	249
	5.7.3	Fluctuation Relation for the Global Currents	251
	5.7.4	Implications	253
		Examples	254

xii Contents

6	Path	Probab	pilities, Temporal Disorder, and Irreversibility	257
	6.1		luction	257
	6.2	Path F	Probabilities	258
		6.2.1	General Processes	258
		6.2.2	Discrete-State Markov Processes	260
		6.2.3	Continuous-State Markov Processes	261
	6.3	Path F	Probabilities, Time Reversal, and Fluctuation Relations	262
		6.3.1	Fluctuation Relations and Entropy Production	262
		6.3.2	Large-Deviation Properties	264
		6.3.3	Markov Jump Processes with Constant Transition Rates	265
		6.3.4	Markov Jump Processes with Time-Varying Transition	
			Rates	268
		6.3.5	Langevin Processes	271
	6.4	Tempo	oral Disorder	275
		6.4.1	Entropy per Unit Time	275
		6.4.2	Kolmogorov-Sinai Entropy per Unit Time	276
		6.4.3	(ε, τ) -Entropy per Unit Time	278
		6.4.4	Temporal Disorder of Markov Jump Processes	279
		6.4.5	Temporal Disorder of Continuous-State Processes	279
		6.4.6	Temporal Disorder of the Ornstein-Uhlenbeck Process	281
		6.4.7	Temporal Disorder of Brownian Motion	281
	6.5	Time .	Asymmetry in Temporal Disorder and Entropy Production	284
		6.5.1	Time-Reversed Coentropy per Unit Time	284
		6.5.2	Temporal Disorder of Typical and Time-Reversed Paths	284
		6.5.3	Entropy Production, Temporal Disorder, and Time	
			Reversal	285
		6.5.4	The Case of Markov Jump Processes	286
		6.5.5	Nonequilibrium Temporal Ordering	287
		6.5.6	Landauer's Principle	289
		6.5.7	The Time-Symmetric Part of Path Probability Decay	
			Rates	290
	6.6	Analo	gy with Other Symmetry-Breaking Phenomena	291
7	Driv	en Brov	wnian Particles and Related Systems	296
	7.1	Stocha	astic Energetics	296
	7.2	Driver	n Brownian Particle	299
	7.3		gous Electric Circuits	304
	7.4		1 Langevin Processes	307
		7.4.1	Underdamped Processes	307
		7.4.2	Overdamped Processes	310

C	•••
Contents	X111
Contents	VIII

		7.4.3	Examples	310
	7.5	Stocha	astic Motion of a Charged Particle in Electric and	
		Magne	etic Fields	313
		7.5.1	Langevin Stochastic Equation and Kramers' Master	
			Equation	313
		7.5.2	Microreversibility and Multivariate Fluctuation Relation	314
	7.6	Heat 7	Transport Driven by Thermal Reservoirs	315
		7.6.1	Langevin Stochastic Equations and Master Equation	315
		7.6.2	Microreversibility and Multivariate Fluctuation Relation	316
8	Effus	sion Pro	ocesses	319
	8.1		inetic Process of Effusion	319
	8.2	Station	nary Distribution Function	319
	8.3		on Suspension	321
	8.4		y and Particle Fluxes	323
	8.5	Entrop	by Production of Effusion	324
	8.6	Maste	r Equation	326
	8.7	Fluctu	ation Relation for Energy and Particle Currents	326
	8.8	Fluctu	ation Relation for the Isothermal Particle Current	328
	8.9	Tempo	oral Disorder and Entropy Production	329
	8.10	Mass	Separation by Effusion	331
9	Proce	esses in	Dilute and Rarefied Gases	333
	9.1	Lengtl	h Scales in Dilute and Rarefied Gases	333
	9.2	Boltzr	nann's Kinetic Equation	335
		9.2.1	Scattering Cross Sections	335
		9.2.2	Derivation of Boltzmann's Equation	336
		9.2.3	H-Theorem	341
		9.2.4	Transport Properties	342
		9.2.5		343
		9.2.6	Applications of Boltzmann's Equation	344
		9.2.7	Gas-Surface Interactions	344
	9.3	Fluctu	ating Boltzmann Equation and Fluctuation Relation	346
		9.3.1	Gaseous Flows in Open Systems	346
		9.3.2	Fluctuating Boltzmann Equation	347
		9.3.3	The Coarse-Grained Master Equation	349
		9.3.4	The Modified Coarse-Grained Operator	353
		9.3.5	The Symmetry of the Modified Operator	354
		9.3.6	Fluctuation Relation for Energy and Particle Currents	355
	9.4		al Fluctuation Relation	355

xiv Contents

10	Fluc	tuating Chemohydrodynamics	358
	10.1	The Principles of Fluctuating Chemohydrodynamics	358
	10.2	Transport by Diffusion	361
		10.2.1 Stochastic Diffusion Equation	361
		10.2.2 Space Discretization and Master Equation	362
		10.2.3 Fluctuation Relation for the Current	366
		10.2.4 The Case of Homogeneous Diffusion	367
	10.3	Finite-Time Fluctuation Relation	369
	10.4	Diffusion-Influenced Surface Reactions	372
		10.4.1 Stochastic Description	372
		10.4.2 Fluctuation Relation for the Reactive Events	373
	10.5	Ion Transport	374
		10.5.1 The Stochastic Nernst–Planck–Poisson Problem	374
		10.5.2 Space Discretization and Master Equation	376
		10.5.3 Fluctuation Relations for the Currents	377
	10.6	Diodes and Transistors	378
		10.6.1 Stochastic Approach to Charge Transport	378
		10.6.2 Diodes	380
		10.6.3 Transistors	383
	10.7	Fluctuating Hydrodynamics and Brownian Motion	388
		10.7.1 Brownian Particle in a Fluctuating Fluid	388
		10.7.2 Generalized Langevin Equation	392
		10.7.3 Standard Langevin Process	394
		10.7.4 Conditional and Joint Probability Densities	395
		10.7.5 Fluctuation Relation for the Generalized Langevin	
		Process	396
11	Reac	tions	398
	11.1	Stochastic Approach to Reactive Systems	398
	11.2	Reaction Networks	399
		11.2.1 Chemical Master Equations	402
		11.2.2 Kinetic Equations	403
		11.2.3 Entropy Production	406
		11.2.4 Cycle Decomposition of the Entropy Production	409
		11.2.5 Fluctuation Relations	411
	11.3	Linear Reaction Networks	412
	11.4	Bistable Reaction Networks	416
	11.5	Noisy Chemical Clocks	419
	11.6	Enzymatic Kinetics	423
	11.7	Copolymerization Processes	430

Contents xv

			Free Copolymerization	432
	1	1.7.2	Template-Directed Copolymerization	436
12	Active 1	Proces	sses	438
	12.1 A	ctive	versus Passive Nonequilibrium Processes	438
	12.2 M	l olecu	ılar Motors	440
	1:	2.2.1	Mechanochemical Coupling and Energy Transduction	440
	13	2.2.2	The F ₁ -ATPase Rotary Molecular Motor	443
	12.3 A	ctive	Particles	454
	1:	2.3.1	Self-Propulsion by Catalytic Reaction and Diffusiophoresis	454
	1.	232	Overdamped Langevin Process for Motion and Reaction	460
			Enhancement of Diffusion	461
			Mechanochemical Coupling and Efficiencies	462
			Mechanochemical Bivariate Fluctuation Relation	464
			Collective Dynamics	467
13	Transpo	ort in	Hamiltonian Dynamical Models	469
	13.1 M	lather	natical Foundations of Transport Properties	469
	13.2 D	iffusi	on of Noninteracting Particles	470
	1	3.2.1	Spatially Periodic Lorentz Gases	470
	1	3.2.2	Multibaker Model of Deterministic Diffusion	472
	1	3.2.3	Diffusive Modes in Spatially Periodic Lorentz Gases	477
	1	3.2.4	Nonequilibrium Stationary Distribution	481
	1	3.2.5	Entropy Production of Diffusion	483
			on of a Tracer Particle in a Many-Particle System	486
	13.4 N	Iany-l	Particle Billiard Models of Heat Conduction	487
	1	3.4.1	Conducting and Insulating Phases in Lattice Billiards	487
			From Liouville's Equation to the Master Equation	489
			Fourier's Law and Heat Conductivity	491
	13.5 N	/lodels	s for Mechanothermal Coupling	491
14	-		itistical Mechanics	494
	14.1 In			494
	_	-	m Mechanics	495
			Quantum Microstates and Observables	495
			Time Evolution of the Quantum Microstates	495
			Time Reversal	496
			Quantum Fields	497
			cal Ensembles and Their Time Evolution	498
	1	4.3.1	Statistical Ensemble and Statistical Operator	498

xvi Contents

		14.3.2	Time Evolution of the Statistical Operator	498
			Wigner Function and the Classical Limit	498
		14.3.4	Equilibrium Statistical Ensembles	499
		14.3.5	Entropy	500
		14.3.6	Ergodic Properties	500
			Local Equilibrium Approach	501
		14.3.8	Path Probabilities in Quantum Systems	502
	14.4	Function	onal Time-Reversal Symmetry Relation and Response	
		Theory		503
		14.4.1	Functional Time-Reversal Symmetry Relation	503
		14.4.2	Quantum Nonequilibrium Work Relation	505
		14.4.3	Response Theory	505
		14.4.4	Fluctuation-Dissipation Theorem	508
	14.5	Quantu	um Master Equations	508
		14.5.1	Overview	508
		14.5.2	Weak-Coupling Master Equation	509
		14.5.3	Slippage of Initial Conditions	512
	14.6	Stocha	stic Schrödinger Equations	513
	14.7	The Ca	ase of the Spin-Boson Model	517
15	Tran	sport in	Open Quantum Systems	520
	15.1	Energy	and Particle Fluxes in Open Quantum Systems	520
	15.2	Fluctua	ation Relation for Energy and Particle Fluxes	520
		15.2.1	Time-Dependent Driving of Open Quantum Systems	521
		15.2.2	Consequences of Microreversibility	523
		15.2.3	Nonequilibrium Work Quantum Fluctuation Relation	524
		15.2.4	Full Counting Statistics of Energy and Particle Fluxes	525
		15.2.5	Microreversibility and Full Counting Statistics	528
	15.3	Scatter	ing Approach to Quantum Transport	529
			Open Quantum Systems with Independent Particles	529
			The Scattering Operator	530
		15.3.3	Full Counting Statistics and Cumulant Generating	
			Function	532
			Cumulant Generating Function and Microreversibility	535
	15.4		ral Disorder and Entropy Production	537
		15.4.1	Characterization of Temporal Disorder in Quantum	
			Systems	537
			Temporal Disorder and Time Reversal	539
		15.4.3	Time Asymmetry of Temporal Disorder and Entropy	
			Production	539

Contents
Contents

15.5 Transport of Fermions				
	15.5.1 Generalities	540		
	15.5.2 Full Counting Statistics and Microreversibility	541		
	15.5.3 Temporal Disorder	542		
	15.5.4 Quantum Transport in Aharonov–Bohm Rings	543		
15.6	Transport of Bosons			
	15.6.1 Generalities	546		
	15.6.2 Full Counting Statistics and Microreversibility	546		
	15.6.3 Temporal Disorder	547		
15.7	Transport in the Classical Limit	548		
	15.7.1 Full Counting Statistics and Microreversibility	548		
	15.7.2 Temporal Disorder	549		
15.8	Stochastic Approach to Electron Transport in Mesoscopic			
	Devices	550		
	15.8.1 General Formulation	550		
	15.8.2 Quantum Dot	552		
	15.8.3 Quantum Point Contact	553		
	15.8.4 Double Quantum Dot with Quantum Point Contact	554		
	15.8.5 Single-Electron Transistor	558		
15.9	Outlook	559		
Conc	usion and Perspectives	561		
Appendix .	A Complements on Thermodynamics	565		
A.1	Thermodynamic Potentials	565		
A.2	Euler Relations in Homogeneous Systems	565		
A.3	Equilibrium Properties of Materials	566		
A.4	Conditions for Thermodynamic Equilibrium	567		
	A.4.1 First Variation of the Entropy	567		
	A.4.2 Second Variation of the Entropy	568		
A.5	Hydrodynamic Equations in Eulerian and Lagrangian Forms	568		
A.6	Deduction of the Entropy Production in Normal Fluids	569		
A.7	The Heat Equation	570		
A.8	1			
	Fluids	572		
A.9	Interfacial Nonequilibrium Thermodynamics	573		
	A.9.1 Balance Equations in Heterogeneous Media	573		
	A.9.2 Local Equilibrium at the Interface	574		
	A.9.3 Contributions to the Entropy Production at an Interface	574		

xviii Contents

App	pendix	B = Coi	mplements on Dynamical Systems Theory	577			
	B.1	Gener	ralities	577			
		B.1.1	From Differential Equations to Flows	577			
		B.1.2	Linear Stability Analysis and Lyapunov Exponents	578			
		B.1.3	Generalized Liouville Equation	579			
		B.1.4	Stationary Probability Distribution and Path Probabilities	580			
		B.1.5	Hausdorff Dimension and Fractals	582			
	B.2	Dissip	pative Dynamical Systems	582			
	B.3	Volume-Preserving Dynamical Systems					
		B.3.1	Hamiltonian Dynamical Systems	583			
		B.3.2	Standard Map	584			
		B.3.3	Billiards and Hard Ball Gases	586			
	B.4	Escape	e-Rate Theory	588			
	B.5	Non-H	Iamiltonian Time-Reversal Symmetric Dynamical Systems	589			
App	endix		nplements on Statistical Mechanics	591			
	C .1	Equilib	brium Statistical Ensembles	591			
		C.1.1	Microcanonical Ensemble	591			
		C.1.2	Canonical Ensemble	593			
		C.1.3	Grand Canonical Ensemble	593			
		C.1.4	Isobaric-Isothermal Ensemble	594			
		C.1.5	Semigrand Canonical Ensembles	595			
	C.2	Local I	Fluctuations at Equilibrium	596			
	C.3	Dilute	Solutions	597			
App	endix	D Con	nplements on Hydrodynamics	600			
	D.1	Hydro	dynamics in Normal Fluids	600			
		D.1.1	Local Thermodynamic Relations	600			
		D.1.2	Derivation of the Equations for the Conjugate Fields	600			
		D.1.3	Derivation of the Dissipative Current Densities	601			
	D.2	Micros	scopic Approach to Reactions in Fluids	602			
App	endix	E Con	nplements on Stochastic Processes	604			
	E.1	Centra	l Limit Theorem	604			
	E.2	Large-	Deviation Theory	604			
	E.3	Standa	rd Poisson Process	606			
	E.4	Lower Bound on the Entropy Production Rate					
	E.5	The Martingale Property Underlying Entropy Production					
	E.6	ϵ					
	E.7	E.7 Ornstein-Uhlenbeck Process					
	E.8	Random Diffusion with Drift					

Contents	xix

E.9 One-Dimensional Reversible Advection–Diffusion Processes							
E.10 Weak-Noise Limit Beyond the Quadratic Approximation							
E.11	E.11 Examples of Non-Markovian Processes						
E.12 Rayleigh Gas							
E.13 Kac's Ring Model							
Appendix	F Comp	plements on Fluctuation Relations	620				
F.1	Proof of	f the Nonlinear Response Properties at Higher Order	620				
F.2	Consequ	uences of Microreversibility in a Magnetizing Field	622				
	F.2.1	General Relations at Arbitrarily High Orders in a					
	•	Magnetizing Field	622				
	F.2.2	Consequences of Expanding the Hyperbolic Tangent	623				
F.3	Time-Reversal Symmetry of the Binary-Collision Operator		624				
F.4	Proof of the Finite-Time Fluctuation Relation for Diffusion		624				
	F.4.1	Markov Jump Process with Poisson Stationary					
		Distribution	624				
	F.4.2	Full Moment Generating Function	625				
	F.4.3	Cumulant Generating Function for the Counting					
		Statistics	626				
	F.4.4	The Case of Homogeneous Diffusion	627				
F.5	Proof of	f the Finite-Time Fluctuation Relation for Reactions	627				
Reference	es		630				
Index			660				