TOPOLOGICAL PHASES OF MATTER

RODERICH MOESSNER

Max-Planck-Institut für Physik komplexer Systeme, Dresden

JOEL E. MOORE

University of California, Berkeley, and Lawrence Berkeley National Laboratory

Contents

	List	of Tables	page viii
	List	of Boxes	ix
	Pref	ace	xi
	Ackr	nowledgments	xiii
1	Intro	duction	1
2	Basi	c Concepts of Topology and Condensed Matter	11
	2.1	Berry Phases in Quantum Mechanics	12
	2.2	One Electron in a Magnetic Field: Landau Levels	20
	2.3	One Electron in a Crystal: Bloch's Theorem	24
	2.4	The Simplest Tight-Binding Model	26
	2.5	Dirac Band Structure of the Honeycomb Lattice	29
	2.6	Landau Theory of Symmetry-Breaking Phases	32
	2.7	Two Mathematical Approaches to Topology	40
	2.8	Topological Defects in Symmetry-Breaking Phases	50
3	Integ	ger Topological Phases: The Integer Quantum Hall Effect and	
	Topo	logical Insulators	58
	3.1	IQHE: Basic Phenomena and Theory	60
	3.2	Two Lattice Models of the IQHE, and Chern Number	69
	3.3	Time-Reversal Symmetry in Classical and Quantum	
		Physics	74
	3.4	Topological Insulators in 2D: Basic Phenomena and	
		Theory	76
	3.5	A Lattice Model of the 2D Topological Insulator	82
	3.6	3D Topological Insulators: Basic Phenomena	84
	3.7	Skyrmions in the Ouantum Hall Effect	88

vi Contents

4	Geometry and Topology of Wavefunctions in Crystals		95
	4.1	Inversion Symmetry, Electrical Polarization, and Thouless	
		Pumping	97
	4.2	The Integer Quantum Hall Effect and Topological Invariants	
		of Energy Bands	104
	4.3	Many-Particle Interpretation of Topological Invariants	107
	4.4	Time-Reversal Invariance and \mathbb{Z}_2 Invariants	109
	4.5	Axion Electrodynamics, Non-Abelian Berry Phase, and	
		Magnetoelectric Polarizability	118
5	Hydr	ogen Atoms for Fractionalization	124
	5.1	The Fractional Quantum Hall Effect	126
	5.2	Fractionalization, Order, and Topology in $d = 1$	145
	5.3	The Resonating Valence Bond Liquid	156
	5.4	Spin Ice	167
6	Gauge and Topological Field Theories		179
	6.1	Pure Ising Gauge Theory and Absence of Local Order	181
	6.2	Ising Gauge Theory with Matter	187
	6.3	Kitaev's Toric Code	192
	6.4	Maxwell Electromagnetism	194
	6.5	Tensor Gauge Theories and Fractons	198
	6.6	Long-Wavelength and Topological Field Theories	201
	6.7	Mutual Statistics and the Quantum Hall Hierarchy	214
	6.8	BF Theory	215
7	Topology in Gapless Matter		218
	7.1	Geometric Quantities in the Semiclassical Theory of	
		Metals	220
	7.2	Dirac and Weyl Semimetals	225
	7.3	Electromagnetic Response of Topological Semimetals	229
	7.4	Kitaev Honeycomb Model	233
8	Disorder and Defects in Topological Phases		239
	8.1	Introduction to Disorder and Localization	241
	8.2	A Semiclassical Model of Quantum Hall Transitions	247
	8.3	Adding Quantum Mechanics: Network Models	251
	8.4	Basic Ideas of Random Matrix Theory and the Tenfold	
		Way	253
	8.5	Vortices in Conventional Superconductors	260

Contents	vii

	8.6	Flux and Crystalline Defects in Integer Topological	
		Phases	266
	8.7	Vortices in Quantum Hall States and Composite Fermions	268
	8.8	Spin Liquids and Disorder	271
9	Topol	ogical Quantum Computation via Non-Abelian Statistics	285
	9.1	Quantum Computation: Universality and Complexity	286
	9.2	Error Correction versus Fault-Tolerance	289
	9.3	Nonlocal Operations for Quantum Computing	292
	9.4	Majoranas in One Dimension: The Kitaev Chain	297
	9.5	Majoranas in Two Dimensions	301
	9.6	Universal Computation and the Read-Rezayi States	310
	9.7	Experimental Implementations of Majorana Modes	311
10	Topol	ogy out of Equilibrium	316
	10.1	Time-Dependent and Time-Periodic (Floquet)	
		Hamiltonians	317
	10.2	Floquet Basics	318
	10.3	Floquet Topological Insulators	324
	10.4	Anomalous Floquet-Anderson Insulator	326
	10.5	Driven Kitaev Chain and π -Majorana Fermions	329
	10.6	Many-Body Floquet Discrete Time Crystal	334
11	Symmetry, Topology, and Information		340
	11.1	Symmetry-Protected Topological Phases	341
	11.2	Entanglement Entropy in Topological States	349
	11.3	The Universe of Topological Materials; Closing Remarks	352
	Appei	ndix: Useful Sources, Quantities, and Equations	355
	References		358
	Index		371

Tables

4.1	Comparison of Berry phase theories of polarization and magnetoelectric	
	polarizability	page 121
8.1	Ten symmetry classes of free-fermion Hamiltonians in dimensions 1–4	
	and their topological possibilities	259
A .1	Some useful quantities and equations	357

Boxes

2.1	The Berry Phase of the Adiabatic Dynamics of a Spin	page 17
2.2	Topology from Geometry: The Gauss-Bonnet Theorem	40
2.3	The Berezinskii–Kosterlitz–Thouless Transition	53
3.1	One Particle on a Ring Pierced by Magnetic Flux	62
3.2	Modulation Doping	67
4.1	Tight-Binding Chain with Two Orbitals per Unit Cell	102
4.2	The Wess-Zumino-Witten Model	110
5.1	Single-Mode Approximation	134
5.2	Fractional Statistics of Particles in Two Dimensions	140
5.3	Fractional Quantum Numbers	146
5.4	Klein Models	151
5.5	Classical Dimer Models and Their Correlations	162
6.1	Quantum IGT in d Dimensions and Classical IGT in $d + 1$	182
6.2	Bound States of the Dirac Equation: Jackiw-Rebbi Model	202
7.1	Semiclassical Equilibrium	224
8.1	One-Parameter Scaling Approach to Anderson Localization	243
8.2	Bogoliubov-de Gennes Formalism of Superconductivity	254
8.3	The Josephson Effect and Gauge Invariance	263
9.1	The No-Cloning Theorem	290
9.2	What Is a Majorana Fermion or Zero Mode?	294
9.3	The Jordan-Wigner Transformation and Statistics in 1D	299
9.4	Solution and Phase Diagram of the Kitaev Honeycomb Model	306
10.1	Phase Structure in and out of Equilibrium	320