An Introduction to Genetic Engineering

Fourth Edition

Desmond S. T. Nicholl

Detailed Contents

Preface

page xv

Part I Genetic Engineering in Context

Ch	apter I Introduction	2
	Chapter Summary	2
1.1	What Is Genetic Engineering?	3
1.2	Laying the Foundations	5
1.3	First Steps in DNA Cloning	6
1.4	Using the Web to Support Your Studies	8
1.5	Conclusion: The Breadth and Scope of Genetic Engineering	12
	Further Reading	13
	Websearch	14
	Concept Map	15
Ch	apter 2 The Story of DNA	16
	Chapter Summary	16
2.1	How Science Works	17
	2.1.1 A Simple Model for the Scientific Method	23
	2.1.2 A More Realistic Model for How Science Works	24
2.2	DNA: A Biographical Timeline	25
2.3	People, Places and Progress: Paradigm Shifts or Step-	
	Changes?	28
2.4	Conclusion: The Scientific Landscape	32
	Further Reading	33
	Websearch	34
	Concept Map	35
Ch	apter 3 Brave New World or Genetic Nightmare?	36
	Chapter Summary	36
3.1	What Is Ethics?	37
	3.1.1 The Ethical Framework	38
	3.1.2 Is Science Ethically and Morally Neutral?	39
	3.1.3 The Scope of Bioethics	40
3.2	Elements of the Ethics Debate	42
	3.2.1 The Role of the Scientist	42
	3.2.2 The Role of Society	43
	3.2.3 Current Issues in Bioethics	43
3.3	Conclusion: Has Frankenstein's Monster Escaped from	
	Pandora's Box?	46
	Further Reading	47
	Websearch	47
	Concept Map	49

Part 2 The Basis of Genetic Engineering

Chapter 4 Introducing Molecular Biology	52
Chapter Summary	52
4.1 How Living Systems Are Organised	53
4.2 The Flow of Genetic Information	55
4.3 The Structure of DNA and RNA	57
4.4 Gene Organisation	60
4.4.1 The Anatomy of a Gene	61
4.4.2 Gene Structure in Prokaryotes	62
4.4.3 Gene Structure in Eukaryotes	63
4.5 Gene Expression	64
4.5.1 From Genes to Proteins	65
4.5.2 Transcription and Translation	66
4.5.3 Regulation of Gene Expression	67
4.6 Genes and Genomes	69
4.6.1 Genome Size and Complexity	70
4.6.2 Genome Organisation	71
4.6.3 The Transcriptome and Proteome	72
4.7 Conclusion: Structure and Function	73
Further Reading	74
Websearch	75
Concept Map	76
Chapter 5 The Tools of the Trade	78
Chapter Summary	78
5.1 Restriction Enzymes – Cutting DNA	79
5.1.1 Type II Restriction Endonucleases	80
5.1.2 Use of Restriction Endonucleases	81
5.1.3 Restriction Mapping	84
5.2 DNA Modifying Enzymes	84
5.2.1 Nucleases	85
5.2.2 Polymerases	86
5.2.3 Enzymes That Modify the Ends of DNA Molecules	87
5.3 DNA Ligase – Joining DNA Molecules	88
5.4 Conclusion: The Genetic Engineer's Toolkit	88
Further Reading	90
Websearch	91
Concept Map	92
Chapter 6 Working with Nucleic Acids	94
Chapter Summary	94
6.1 Evolution of the Laboratory	95
6.2 Isolation of DNA and RNA	99
6.3 Handling and Quantification of Nucleic Acids	100

6.4	Labelling Nucleic Acids	101
	6.4.1 Types of Label - Radioactive or Not?	102
	6.4.2 End Labelling	103
	6.4.3 Nick Translation	104
	6.4.4 Labelling by Primer Extension	104
6.5	Nucleic Acid Hybridisation	106
6.6	Gel Electrophoresis	108
6.7	DNA Sequencing: The First Generation	110
	6.7.1 Principles of First-Generation DNA Sequencing	111
	6.7.2 Sanger (Dideoxy or Enzymatic) Sequencing	112
	6.7.3 Electrophoresis and Reading of Sequences	112
	6.7.4 Automation and Scale-Up of DNA Sequencing	114
6.8	Next-Generation Sequencing Technologies	115
	6.8.1 NGS – A Step-Change in DNA Sequencing	116
	6.8.2 Principles of NGS	116
	6.8.3 NGS Methodologies	119
6.9	Conclusion: Essential Techniques and Methods	127
	Further Reading	129
	Websearch	129
	Concept Map	131

Part 3 The Methodology of Gene Manipulation

Ch	apter 7 Host Cells and Vectors	134
	Chapter Summary	134
7.1	Types of Host Cell	135
	7.1.1 Prokaryotic Hosts	136
	7.1.2 Eukaryotic Hosts	136
7.2	Plasmid Vectors for Use in E. coli	137
	7.2.1 What Are Plasmids?	137
	7.2.2 Basic Cloning Plasmids	138
	7.2.3 Slightly More Exotic Plasmid Vectors	139
7.3	Bacteriophage Vectors for Use in E. coli	141
	7.3.1 What Are Bacteriophages?	141
	7.3.2 Vectors Based on Bacteriophage λ	145
	7.3.3 Vectors Based on Bacteriophage M13	147
7.4	Other Vectors	148
	7.4.1 Hybrid Plasmid/Phage Vectors	148
	7.4.2 Vectors for Use in Eukaryotic Cells	149
	7.4.3 Artificial Chromosomes	150
7.5	Getting DNA into Cells	152
	7.5.1 Transformation and Transfection	152
	7.5.2 Packaging Phage DNA In Vitro	153
	7.5.3 Alternative DNA Delivery Methods	154
7.6	Conclusion: From In Vitro to In Vivo	156
	Further Reading	157
	Websearch	157
	Concept Map	159

Ch	apter 8 Cloning Strategies	160
	Chapter Summary	160
8.1	Which Approach Is Best?	161
	8.1.1 Cloning in the Pre-genomic Era	162
	8.1.2 Cloning (or Not) in the Genomic and Post-genomic Eras	162
8.2	Generating DNA Fragments for Cloning	165
	8.2.1 Genomic DNA	165
	8.2.2 Synthesis of cDNA	165
	8.2.3 PCR Fragments	168
	8.2.4 Synthetic Biology: Making Genes from Scratch	168
8.3	Inserting DNA fragments into Vectors	169
	8.3.1 Ligation of Blunt/Cohesive-Ended Fragments	169
	8.3.2 Homopolymer Tailing	170
	8.3.3 Linkers and Adapters	170
	8.3.4 Other Methods for Joining DNA Fragments and Vectors	173
8.4	Putting It All Together	175
	8.4.1 Cloning in a λ Replacement Vector	176
	8.4.2 Expression of Cloned cDNA Molecules	177
	8.4.3 Cloning Large DNA Fragments in BAC and YAC Vectors	178
	8.4.4 Gateway Cloning Technology	180
	8.4.5 Golden Gate Cloning and Assembly	180
	8.4.6 The Gibson Assembly Method	183
8.5	Conclusion: Designing a Cloning Strategy	184
	Further Reading	184
	Websearch	185
	Concept Map	186
Ch	apter 9 The Polymerase Chain Reaction	188
	Chapter Summary	188
9.1	History of the PCR	189
9.2	The Methodology of the PCR	190
	9.2.1 Essential Features of the PCR	190
	9.2.2 Designing Primers for the PCR	192
	9.2.3 DNA Polymerases for the PCR	194
9.3	More Exotic PCR Techniques	195
	9.3.1 PCR Using mRNA Templates	195
	9.3.2 Nested PCR	198
	9.3.3 Inverse PCR	199
	9.3.4 Quantitative and Digital PCR	199
	9.3.5 RAPD and Several Other Acronyms	202
9.4	Processing and Analysing PCR Products	205
9.5	Conclusion: The Game-Changing Impact of the PCR	205
	Further Reading	206
	Websearch	207
	Concept Man	208
	Concept map	

Chapter 10	Selection, Screening and Analysis	
-	of Recombinants	210
Chapter S	ummary	210
10.1 Genetic Se	election and Screening Methods	212
10.1.1 Use	of Chromogenic Substrates	212
10.1.2 Inset	rtional Inactivation	213
10.1.3 Com	plementation of Defined Mutations	214
10.1.4 Othe	er Genetic Selection Methods	215
10.2 Screening	Using Nucleic Acid Hybridisation	216
10.2.1 Nucl	leic Acid Probes	216
10.2.2 Scre	ening Clone Banks	218
10.3 Use of the	e PCR in Screening Protocols	220
10.4 Immunol	ogical Screening for Expressed Genes	221
10.5 Analysis o	of Cloned Genes	222
10.5.1 Rest	riction Mapping	222
10.5.2 Blot	ting Techniques	223
10.5.3 Sub-	cloning	225
10.5.4 DNA	Sequencing	225
10.6 Conclusio	on: Needles in Haystacks	226
Further R	eading	227
Websearc	-h	227
Concept I	Мар	229
Chapter II	Bioinformatics	
Chapter II	F Diolinoi mades	230
Chapter S	Summary	230
11.1 What Is I	Bioinformatics?	231
11.1.1 Con	iputing Technology	232
11.1.2 The	Impact of the Internet and World Wide Web	234
11.2 Biological	Data Sets	234
11.2.1 Gen	eration and Organisation of Information	234
11.2.2 Prin	hary and Secondary Databases	235
11.2.3 Nuc	leic Acid Databases	236
11.2.4 Prot	ein Databases	237
11.2.5 Oth	er Bioinformatics Resources	239
11.3 Using Bio	informatics as a Tool	241
11.3.1 Avo	iding the 'GIGO' Effect – Real Experiments	241
11.3.2 Avo	iding the Test Tube – Computational Experimentation	242
11.3.3 Pres	entation of Database Information	243
11.4 Conclusio	on: Bioscience and Big Data	244
Further K	eading	245
Concent N	ll Man	240
Concept r	wap	247
Chapter 12	Genome Editing	248
Chapter S	Summary	248
12.1 Gene Tar	geting	250
12.2 Genome I	Editing Using Engineered Nucleases	251
12.2.1 Zinc	-Finger Nucleases	251
	-	

	12.2.2 TALENs	253
	12.2.3 The CRISPR-Cas9 System	253
	12.2.4 Prime Editing	256
12.3	Editing RNA as an Option	258
12.4	Where Can Genome Editing Take Us?	258
12.5	Conclusion: From Genome Read to Genome Write	259
	Further Reading	260
	Websearch	260
	Concept Map	261

Part 4	Genetic	Engineering	in Action
--------	---------	-------------	-----------

Chapter 13 Investigating Genes, Genomes	
and 'Otheromes'	264
Chapter Summary	264
13.1 Analysis of Gene Structure and Function	265
13.1.1 A Closer Look at Sequences	265
13.1.2 Finding Important Regions of Genes	266
13.1.3 Investigating Gene Expression	270
13.2 Understanding Genomes	272
13.2.1 Analysing and Mapping Genomes	273
13.2.2 An Audacious Idea	276
13.2.3 The Human Genome Project	277
13.2.4 Other Genome Projects	281
13.3 'Otheromes'	282
13.3.1 The Transcriptome	282
13.3.2 The Proteome	285
13.3.3 Metabolomes, Interactomes and More	286
13.4 Life in the Post-genomic Era	288
13.4.1 Structural Genomics and Proteomics	289
13.4.2 Functional Genomics	289
13.4.3 Comparative Genomics	289
13.5 Conclusion: The Central Role of the Genome	291
Further Reading	292
Websearch	292
Concept Map	294
Chapter 14 Genetic Engineering and Biotechnology	296
Chapter Summary	296

	Chapter Summary	296
14.1	Making Proteins	297
	14.1.1 Native and Fusion Proteins	299
	14.1.2 Yeast Expression Systems	300
	14.1.3 The Baculovirus Expression System	301
	14.1.4 Mammalian Cell Lines	302
14.2	Protein Engineering	303
	14.2.1 Rational Design	303
	14.2.2 Directed Evolution	305

14.3	From Laboratory to Production Plant	308
	14.3.1 Thinking Big – The Biotechnology Industry	308
	14.3.2 Production Systems	310
	14.3.3 Scale-Up Considerations	310
	14.3.4 Downstream Processing	312
14.4	Examples of Biotechnological Applications of	
	rDNA Technology	312
	14.4.1 Production of Enzymes	313
	14.4.2 The BST Story	314
	14.4.3 Therapeutic Products for Use in Human Healthcare	316
	14.4.4 Meeting the COVID-19 Challenge	320
14.5	Conclusion: Industrial-Scale Biology	322
	Further Reading	323
	Websearch	324
	Concept Map	325

Chapter 15

Medical and Forensic Applications of Gene Manipulation

of Gene Manipulation	326
Chapter Summary	326
15.1 Diagnosis and Treatment of Medical Conditions	327
15.1.1 Diagnosis of Infection	327
15.1.2 Patterns of Inheritance	328
15.1.3 Genetically Based Disease Conditions	330
15.1.4 Investigating Disease Alleles Using Comparative Genomics	337
15.1.5 Vaccine Development Using rDNA	338
15.1.6 Therapeutic Antibodies	339
15.1.7 Xenotransplantation	341
15.2 Treatment Using rDNA Technology – Gene Therapy	342
15.2.1 Getting Transgenes into Patients	. 343
15.2.2 Gene Therapy for Adenosine Deaminase Deficiency	344
15.2.3 Gene Therapy for Cystic Fibrosis	346
15.2.4 What Does the Future Hold for Gene Therapy?	346
15.3 RNA Interference	347
15.3.1 What Is RNAi?	347
15.3.2 Using RNAi as a Tool for Studying Gene Expression	348
15.3.3 RNAi as a Potential Therapy	348
15.3.4 Antisense Oligonucleotides	350
15.4 Medical Applications of Genome Editing	350
15.4.1 Disease Targets for Genome Editing	350
15.4.2 Sickle-Cell Success	351
15.4.3 CRISPR-Cas9 – CAR T-Cell Therapies in Cancer Treatment	352
15.4.4 The CCR5 Controversy	353
15.5 DNA Profiling	354
15.5.1 The History of 'Genetic Fingerprinting'	354
15.5.2 DNA Profiling and the Law	356
15.5.3 Mysteries of the Past Revealed by Genetic Detectives	356
15.6 Conclusion: rDNA in Diagnosis, Analysis and Treatment	358
Further Reading	359
Websearch	360
Concept Map	361

Chamber 16 Tenneserie Plants and Animals	
Chapter 16 Transgenic Plants and Animals	362
Chapter Summary	362
16.1 A Complex Landscape	363
16.2 Transgenic Plants	365
16.2.1 Why Transgenic Plants?	365
16.2.2 Making Transgenic Plants	365
16.2.3 Putting the Technology to Work	369
16.2.4 Have Transgenic Plants Delivered or Disappointed?	377
16.3 Transgenic Animals	378
16.3.1 Why Transgenic Animals?	378
16.3.2 Producing Transgenic Animals	379
16.3.3 Applications of Transgenic Animal Technology	380
16.4 Future Trends	383
16.4.1 Transgenesis or Genome Editing?	384
16.4.2 Gene Drives	384
16.5 Conclusion: Changing Genomes and Attitudes	385
Further Reading	386
Websearch	387
Concept Map	389
Chapter 17 The Other Sort of Cloning	390
Chapter Summary	390
17.1 Early Thoughts and Experiments	391
17.1.1 First Steps towards Cloning	393
17.1.2 Nuclear Totipotency	393
17.2 Frogs and Toads and Carrots	394
17.3 A Famous Sheep – The Breakthrough Achieved	396
17.4 Beyond Dolly	398
17.4.1 Potential Unfulfilled?	399
17.4.2 The Future of Organismal Cloning	400
17.5 Conclusion: From Genome to Organism	401
Further Reading	402
Websearch	403
Concept Map	404
Glossary	405
Index	439