GENOMES 5

T. A. Brown

CRC Press is an imprint of the Taylor & Francis Group, an Informa business

CONTENTS

PREFACE ACKNOWLEDGEMENTS

PART 1 HOW GENOMES ARE STUDIED

CHAPTER 1 GENOMES, TRANSCRIPTOMES, AND PROTEOMES

1.1 **DNA** Genes are made of DNA DNA is a polymer of nucleotides The discovery of the double helix The double helix is stabilized by base-pairing and base-stacking The double helix has structural flexibility **1.2 RNA AND THE TRANSCRIPTOME** RNA is a second type of polynucleotide The RNA content of the cell Many RNAs are synthesized as precursor molecules There are different definitions of the transcriptome **1.3 PROTEINS AND THE PROTEOME** There are four hierarchical levels of protein structure Amino acid diversity underlies protein diversity The link between the transcriptome and the

The link between the transcriptome and the proteome The genetic code is not universal The link between the proteome and the biochemistry of the cell SUMMARY SHORT ANSWER QUESTIONS IN-DEPTH PROBLEMS FURTHER READING CHAPTER 2

CHAPTER 2 STUDYING DNA

2.1 ENZYMES	FOR DNA	MANIPULATION	

	XIII VII	The mode of action of a template-dependent DNA polymerase The types of DNA polymerase used in research Restriction endonucleases enable DNA molecules to be cut at defined positions Gel electrophoresis is used to examine the results of a restriction digest Interesting DNA fragments can be identified by Southern hybridization Ligases join DNA fragments together End-modification enzymes	26 28 29 32 33 34 35
	1	2.2 THE POLYMERASE CHAIN REACTION Carrying out a PCR The rate of product formation can be followed	35 36
	2 3 5	during a PCR PCR has many and diverse applications	37 38
	6 8 9	2.3 DNA CLONING Why is gene cloning important? The simplest cloning vectors are based on <i>E. coli</i> plasmids	38 39 39
	11 11 12	Bacteriophages can also be used as cloning vectors Vectors for longer pieces of DNA DNA can be cloned in organisms other than <i>E. coli</i>	41 44 45
	13 15	SUMMARY	47
_	16	SHORT ANSWER QUESTIONS	48 48
e	16 16	FURTHER READING	49
	18 19	CHAPTER 3	- 4
	20	MAPPING GENOMES	51
	22 23	3.1 WHY A GENOME MAP IS IMPORTANT Genome maps are needed in order to sequence the more complex genomes	51 51
	23 23	Genome maps are not just sequencing aids	52
	24	3.2 MARKERS FOR GENETIC MAPPING Genes were the first markers to be used	53 54
		RFLPs and SSLPs are examples of DNA markers Single-nucleotide polymorphisms are the most useful type of DNA marker	55 57
	25		

The principles of inheritance and the discovery of linkage Partial linkage is explained by the behavior of chromosomes during meiosis From partial linkage to genetic mapping

3.4 LINKAGE ANALYSIS WITH DIFFERENT TYPES OF ORGANISM

Linkage analysis when planned breeding		
experiments are possible		
Gene mapping by human pedigree analysis		
Genetic mapping in bacteria		
The limitations of linkage analysis		

3.5 PHYSICAL MAPPING BY DIRECT EXAMINATION OF DNA MOLECULES

Conventional restriction mapping is only applicable to small DNA molecules

Optical mapping can locate restriction sites in longer DNA molecules

Optical mapping with fluorescent probes

Further innovations extend the scope of optical mapping

3.6 PHYSICAL MAPPING BY ASSIGNING MARKERS TO DNA FRAGMENTS

SUMMARY
A clone library can be used as the mapping reagent
DNA fragments for STS mapping can be obtained as radiation hybrids
DNA frequences for STS manning can be obtained
Any unique sequence can be used as an STS

SHORT	ANSWER QUESTIONS	8
SHORT	ANSWER QUESTIONS	

8 **IN-DEPTH PROBLEMS**

FURTHER READING

CHAPTER 4 SEQUENCING GENOMES

4.1 METHODOLOGY FOR DNA SEQUENCING Chain-termination sequencing of PCR products Illumina sequencing is the most popular shortread method

83

83

86

88

90

A variety of other short-read sequencing methods have been devised

Single-molecule real-time sequencing provides reads up to 200 kb in length

Nanopore sequencing is currently the longest long-read method

4.2 HOW TO SEQUENCE A GENOME

The potential of the shotgun method was proven	
by the Haemophilus influenzae sequence	

60	Many prokaryotic genomes have been sequenced by the shotgun method	95
63	Shotgun sequencing of eukaryotic genomes requires sophisticated assembly programs	95
	From contigs to scaffolds	97
64	What is a 'genome sequence' and do we always need one?	99
64		
66	4.3 SEQUENCING THE HUMAN GENOME	101
67 69	The Human Genome Project – genome sequencing in the heroic age	102
09	The human genome – genome sequencing in the modern age	104
70	The Neanderthal genome – assembly of an extinct	
71	genome using the human sequence as a reference	106 107
71	The human genome – new challenges	107
71	SUMMARY	108
74	SHORT ANSWER QUESTIONS	109
75	IN-DEPTH PROBLEMS	110
	FURTHER READING	110
77		
77	CHAPTER 5	
78	GENOME ANNOTATION	113
79		
80	5.1 GENOME ANNOTATION BY COMPUTER ANALYSIS OF THE DNA SEQUENCE	113
	The coding regions of genes are open reading	
80	frames	113
81	Simple ORF scans are less effective with genomes of higher eukaryotes	114
81	Locating genes for noncoding RNA	116
	Homology searches and comparative genomics give an extra dimension to gene prediction	117
83	5.2 GENOME ANNOTATION BY ANALYSIS	

OF GENE TRANSCRIPTS

Hybridization tests can determine if a fragment contains one or more genes	119
Methods are available for precise mapping of the ends of transcripts	120
Exon-intron boundaries can also be located with precision	121

119

5.3 ANNOTATION BY GENOME-WIDE RNA MAPPING 121 -

92	to chromosomes or entire genomes	122
93	Transcript sequences can be directly mapped onto	
	a genome	123
93	Obtaining transcript sequences by SAGE and CAGE	125

5.4 GENOME BROWSERS	126
SUMMARY	128
SHORT ANSWER QUESTIONS	128
IN-DEPTH PROBLEMS	129
FURTHER READING	129
CHAPTER 6 IDENTIFYING GENE FUNCTIONS	131
6.1 COMPUTER ANALYSIS OF GENE	
FUNCTION Homology reflects evolutionary relationships	131 131
Homology analysis can provide information on the function of a gene	e 132
Identification of protein domains can help to assign function to an unknown gene	133
Annotation of gene function requires a common terminology	134
6.2 ASSIGNING FUNCTION BY GENE	
INACTIVATION AND OVEREXPRESSION Functional analysis by gene inactivation	135 136
Gene inactivation by genome editing	136
Gene inactivation by homologous recombination	137
Gene inactivation by transposon tagging and RNA interference	۱ 138
Gene overexpression can also be used to assess function	139
The phenotypic effect of gene inactivation or overexpression may be difficult to discern	140
6.3 UNDERSTANDING GENE FUNCTION BY STUDIES OF ITS EXPRESSION PATTERN	

AND PROTEIN PRODUCT 142 Reporter genes and immunocytochemistry can be used to locate where and when genes are expressed 142 CRISPR can be used to make specific changes in a gene and the protein it encodes 143 Other methods for site-directed mutagenesis 145 **6.4 USING CONVENTIONAL GENETIC ANALYSIS TO IDENTIFY GENE FUNCTION** 147 Identification of human genes responsible for inherited diseases 147

Genome-wide association studies can also identify	
genes for diseases and other traits	149

SUMMARY

SHORT ANSWER QUESTIONS	15 ⁻
------------------------	-----------------

128	FURTHER READING	152
128		
129	PART 2 GENOME ANATOMI	ES
129	CHAPTER 7 EUKARYOTIC NUCLEAR GENOMES	153
31	7.1 NUCLEAR GENOMES ARE CONTAINED IN CHROMOSOMES	153
131 131	Chromosomes are made of DNA and protein The special features of metaphase chromosomes Centromeres and telomeres have distinctive DNA	153 155
132	sequences	157
100	7.2 THE GENETIC FEATURES OF NUCLEAR	
133	GENOMES	158
134	Gene numbers can be misleading Genes are not evenly distributed within a genome	158 160
	A segment of the human genome	161
135	The yeast genome is very compact	163
136	Gene organization in other eukaryotes	165
136	Families of genes	166
137	Pseudogenes and other evolutionary relics	167
138	7.3 THE REPETITIVE DNA CONTENT OF EUKARYOTIC NUCLEAR GENOMES	169
139	Tandemly repeated DNA is found at centromeres and elsewhere in eukaryotic chromosomes	169
140	Minisatellites and microsatellites	170
140	Interspersed repeats	171
	SUMMARY	171
142	SHORT ANSWER QUESTIONS	172
142	IN-DEPTH PROBLEMS	173
143 145	FURTHER READING	173
145	CHAPTER 8 GENOMES OF PROKARYOTES	
147	AND EUKARYOTIC ORGANELLES	175
147	8.1 THE PHYSICAL FEATURES OF	4
140	PROKARYOTIC GENOMES The traditional view of the prokaryotic	175
149	chromosome	175
150	Some bacteria have linear or multipartite genomes	5 177

IN-DEPTH PROBLEMS

1 8.2 THE GENETIC FEATURES OF PROKARYOTIC GENOMES 151

Gene organization in the <i>E. coli</i> K12 genome Operons are characteristic features of prokaryotic	180
genomes Prokaryotic genome sizes and gene numbers vary	182
according to biological complexity Genome sizes and gene numbers vary within	184
individual species Distinctions between prokaryotic species are	185
further blurred by horizontal gene transfer Metagenomes describe the members of a	186
community	188
8.3 EUKARYOTIC ORGANELLE GENOMES The endosymbiont theory explains the origin of	189
The physical and genetic features of organelle	190
genomes	191
SUMMARY	195
SHORT ANSWER QUESTIONS	195
IN-DEPTH PROBLEMS	196
FURTHER READING	196
CHAPTER 9	
VIRUS GENOMES AND MOBILE GENETIC ELEMENTS	199
GENETIC ELEMENTS 9.1 THE GENOMES OF BACTERIOPHAGES AND EUKARYOTIC VIRUSES	199 199
GENETIC ELEMENTS 9.1 THE GENOMES OF BACTERIOPHAGES	
GENETIC ELEMENTS 9.1 THE GENOMES OF BACTERIOPHAGES AND EUKARYOTIC VIRUSES Bacteriophage genomes have diverse structures and organizations Replication strategies for bacteriophage genomes	199 199 201
GENETIC ELEMENTS 9.1 THE GENOMES OF BACTERIOPHAGES AND EUKARYOTIC VIRUSES Bacteriophage genomes have diverse structures and organizations Replication strategies for bacteriophage genomes Structures and replication strategies for eukaryotic viral genomes	199 199 201 202
GENETIC ELEMENTS 9.1 THE GENOMES OF BACTERIOPHAGES AND EUKARYOTIC VIRUSES Bacteriophage genomes have diverse structures and organizations Replication strategies for bacteriophage genomes Structures and replication strategies for eukaryotic viral genomes Some retroviruses cause cancer	199 199 201
GENETIC ELEMENTS 9.1 THE GENOMES OF BACTERIOPHAGES AND EUKARYOTIC VIRUSES Bacteriophage genomes have diverse structures and organizations Replication strategies for bacteriophage genomes Structures and replication strategies for eukaryotic viral genomes Some retroviruses cause cancer Genomes at the edge of life 9.2 MOBILE GENETIC ELEMENTS	199 199 201 202 202 204
GENETIC ELEMENTS 9.1 THE GENOMES OF BACTERIOPHAGES AND EUKARYOTIC VIRUSES Bacteriophage genomes have diverse structures and organizations Replication strategies for bacteriophage genomes Structures and replication strategies for eukaryotic viral genomes Some retroviruses cause cancer Genomes at the edge of life	199 201 202 204 205
GENETIC ELEMENTS 9.1 THE GENOMES OF BACTERIOPHAGES AND EUKARYOTIC VIRUSES Bacteriophage genomes have diverse structures and organizations Replication strategies for bacteriophage genomes Structures and replication strategies for eukaryotic viral genomes Some retroviruses cause cancer Genomes at the edge of life 9.2 MOBILE GENETIC ELEMENTS RNA transposons with long terminal repeats are related to viral retroelements Some RNA transposons lack LTRs	199 201 202 204 205 206
GENETIC ELEMENTS 9.1 THE GENOMES OF BACTERIOPHAGES AND EUKARYOTIC VIRUSES Bacteriophage genomes have diverse structures and organizations Replication strategies for bacteriophage genomes Structures and replication strategies for eukaryotic viral genomes Some retroviruses cause cancer Genomes at the edge of life 9.2 MOBILE GENETIC ELEMENTS RNA transposons with long terminal repeats are related to viral retroelements Some RNA transposons lack LTRs DNA transposons are common in prokaryotic genomes	199 201 202 204 205 206 206
GENETIC ELEMENTS 9.1 THE GENOMES OF BACTERIOPHAGES AND EUKARYOTIC VIRUSES Bacteriophage genomes have diverse structures and organizations Replication strategies for bacteriophage genomes Structures and replication strategies for eukaryotic viral genomes Some retroviruses cause cancer Genomes at the edge of life 9.2 MOBILE GENETIC ELEMENTS RNA transposons with long terminal repeats are related to viral retroelements Some RNA transposons lack LTRs DNA transposons are common in prokaryotic	199 199 201 202 204 205 206 206 208
GENETIC ELEMENTS 9.1 THE GENOMES OF BACTERIOPHAGES AND EUKARYOTIC VIRUSES Bacteriophage genomes have diverse structures and organizations Replication strategies for bacteriophage genomes Structures and replication strategies for eukaryotic viral genomes Some retroviruses cause cancer Genomes at the edge of life 9.2 MOBILE GENETIC ELEMENTS RNA transposons with long terminal repeats are related to viral retroelements Some RNA transposons lack LTRs DNA transposons are common in prokaryotic genomes DNA transposons are less common in eukaryotic	199 201 202 204 205 206 206 208 209
GENETIC ELEMENTS 9.1 THE GENOMES OF BACTERIOPHAGES AND EUKARYOTIC VIRUSES Bacteriophage genomes have diverse structures and organizations Replication strategies for bacteriophage genomes Structures and replication strategies for eukaryotic viral genomes Some retroviruses cause cancer Genomes at the edge of life 9.2 MOBILE GENETIC ELEMENTS RNA transposons with long terminal repeats are related to viral retroelements Some RNA transposons lack LTRs DNA transposons are common in prokaryotic genomes DNA transposons are less common in eukaryotic genomes	199 201 202 204 205 206 206 208 209 211
GENETIC ELEMENTS 9.1 THE GENOMES OF BACTERIOPHAGES AND EUKARYOTIC VIRUSES Bacteriophage genomes have diverse structures and organizations Replication strategies for bacteriophage genomes Structures and replication strategies for eukaryotic viral genomes Some retroviruses cause cancer Genomes at the edge of life 9.2 MOBILE GENETIC ELEMENTS RNA transposons with long terminal repeats are related to viral retroelements Some RNA transposons lack LTRs DNA transposons are common in prokaryotic genomes DNA transposons are less common in eukaryotic genomes SUMMARY	199 201 202 204 205 206 206 208 209 211 212
GENETIC ELEMENTS 9.1 THE GENOMES OF BACTERIOPHAGES AND EUKARYOTIC VIRUSES Bacteriophage genomes have diverse structures and organizations Replication strategies for bacteriophage genomes Structures and replication strategies for eukaryotic viral genomes Some retroviruses cause cancer Genomes at the edge of life 9.2 MOBILE GENETIC ELEMENTS RNA transposons with long terminal repeats are related to viral retroelements Some RNA transposons lack LTRs DNA transposons are common in prokaryotic genomes SUMMARY SHORT ANSWER QUESTIONS	 199 201 202 204 205 206 206 208 209 211 212 213

PART 3 HOW GENOMES ARE EXPRESSED

CHAPTER 10 **ACCESSING THE GENOME** 215 **10.1 INSIDE THE NUCLEUS** 215 The nucleus has an ordered internal structure 216 Chromosomal DNA displays different degrees of 217 packaging The nuclear matrix is a dynamic structure 218 Each chromosome has its own territory within the nucleus 220 Chromosomal DNA is organized into topologically associating domains 221 Insulators prevent crosstalk between segments of chromosomal DNA 223 **10.2 NUCLEOSOME MODIFICATIONS AND GENOME EXPRESSION** 224 Acetvlation of histones influences many nuclear activities, including genome expression 225 Histone deacetylation represses active regions of 226 the genome Acetylation is not the only type of histone modification 227 Nucleosome repositioning also influences gene expression 230 **10.3 DNA MODIFICATION AND GENOME EXPRESSION** 231 Genome silencing by DNA methylation 231 Methylation is involved in genomic imprinting and X inactivation 232 **SUMMARY** 234 SHORT ANSWER QUESTIONS 235 **IN-DEPTH PROBLEMS** 235 **FURTHER READING** 236

CHAPTER 11 THE ROLE OF DNA-BINDING	
PROTEINS IN GENOME EXPRESSION	239
11.1 METHODS FOR STUDYING DNA- BINDING PROTEINS AND THEIR	
ATTACHMENT SITES X-ray crystallography provides structural data for	239
any protein that can be crystallized	239

NMR spectroscopy is used to study the structures of small proteins	240
Gel retardation identifies DNA fragments that bind to proteins	241
Protection assays pinpoint binding sites with greater accuracy	242
Modification interference identifies nucleotides central to protein binding	244
Genome-wide scans for protein attachment sites	245
11.2 THE SPECIAL FEATURES OF	
DNA-BINDING PROTEINS The helix-turn-helix motif is present in	245
prokaryotic and eukaryotic proteins	246
Zinc fingers are common in eukaryotic proteins	248
Other nucleic acid-binding motifs	248
11.3 THE INTERACTION BETWEEN DNA	
AND ITS BINDING PROTEINS	249
Contacts between DNA and proteins	250
Direct readout of the nucleotide sequence The conformation of the helix also influences	250
protein binding	251
SUMMARY	252
	753
SHORT ANSWER QUESTIONS IN-DEPTH PROBLEMS	253 253
	233
FURTHER READING	254
	254
CHAPTER 12	
	254 257
CHAPTER 12 TRANSCRIPTOMES 12.1 THE COMPONENTS OF THE	257
CHAPTER 12 TRANSCRIPTOMES 12.1 THE COMPONENTS OF THE TRANSCRIPTOME	
CHAPTER 12 TRANSCRIPTOMES 12.1 THE COMPONENTS OF THE TRANSCRIPTOME The mRNA fraction of a transcriptome is small but	257 257
CHAPTER 12 TRANSCRIPTOMES 12.1 THE COMPONENTS OF THE TRANSCRIPTOME	257
CHAPTER 12 TRANSCRIPTOMES 12.1 THE COMPONENTS OF THE TRANSCRIPTOME The mRNA fraction of a transcriptome is small but complex	257 257 257
CHAPTER 12 TRANSCRIPTOMES 12.1 THE COMPONENTS OF THE TRANSCRIPTOME The mRNA fraction of a transcriptome is small but complex Short noncoding RNAs have diverse functions Long noncoding RNAs are enigmatic transcripts	257 257 257 258
CHAPTER 12 TRANSCRIPTOMES 12.1 THE COMPONENTS OF THE TRANSCRIPTOME The mRNA fraction of a transcriptome is small but complex Short noncoding RNAs have diverse functions	257 257 257 258
CHAPTER 12 TRANSCRIPTOMES 12.1 THE COMPONENTS OF THE TRANSCRIPTOME The mRNA fraction of a transcriptome is small but complex Short noncoding RNAs have diverse functions Long noncoding RNAs are enigmatic transcripts 12.2 TRANSCRIPTOMICS: CATALOGING THE TRANSCRIPTOMICS: CATALOGING THE TRANSCRIPTOMES OF CELLS AND TISSUES	257 257 257 258
CHAPTER 12 TRANSCRIPTOMES 12.1 THE COMPONENTS OF THE TRANSCRIPTOME The mRNA fraction of a transcriptome is small but complex Short noncoding RNAs have diverse functions Long noncoding RNAs are enigmatic transcripts 12.2 TRANSCRIPTOMICS: CATALOGING THE TRANSCRIPTOMICS: CATALOGING THE TRANSCRIPTOMES OF CELLS AND TISSUES Microarray analysis and RNA sequencing are used	257 257 257 258 260 262
CHAPTER 12 TRANSCRIPTOMES 12.1 THE COMPONENTS OF THE TRANSCRIPTOME The mRNA fraction of a transcriptome is small but complex Short noncoding RNAs have diverse functions Long noncoding RNAs are enigmatic transcripts 12.2 TRANSCRIPTOMICS: CATALOGING THE TRANSCRIPTOMICS: CATALOGING THE TRANSCRIPTOMES OF CELLS AND TISSUES Microarray analysis and RNA sequencing are used to study the contents of transcriptomes	257 257 258 260
CHAPTER 12 TRANSCRIPTOMES 12.1 THE COMPONENTS OF THE TRANSCRIPTOME The mRNA fraction of a transcriptome is small but complex Short noncoding RNAs have diverse functions Long noncoding RNAs are enigmatic transcripts 12.2 TRANSCRIPTOMICS: CATALOGING THE TRANSCRIPTOMICS: CATALOGING THE TRANSCRIPTOMES OF CELLS AND TISSUES Microarray analysis and RNA sequencing are used to study the contents of transcriptomes Single-cell studies add greater precision to transcriptomics	257 257 257 258 260 262
CHAPTER 12 TRANSCRIPTOMES 12.1 THE COMPONENTS OF THE TRANSCRIPTOME The mRNA fraction of a transcriptome is small but complex Short noncoding RNAs have diverse functions Long noncoding RNAs are enigmatic transcripts 12.2 TRANSCRIPTOMICS: CATALOGING THE TRANSCRIPTOMICS: CATALOGING THE TRANSCRIPTOMES OF CELLS AND TISSUES Microarray analysis and RNA sequencing are used to study the contents of transcriptomes Single-cell studies add greater precision to	257 257 257 258 260 262 262
CHAPTER 12 TRANSCRIPTOMES 12.1 THE COMPONENTS OF THE TRANSCRIPTOME The mRNA fraction of a transcriptome is small but complex Short noncoding RNAs have diverse functions Long noncoding RNAs are enigmatic transcripts 12.2 TRANSCRIPTOMICS: CATALOGING THE TRANSCRIPTOMES OF CELLS AND TISSUES Microarray analysis and RNA sequencing are used to study the contents of transcriptomes Single-cell studies add greater precision to transcriptomics Spatial transcriptomics enables transcripts to be mapped directly in tissues and cells	257 257 258 260 262 262 264
CHAPTER 12 TRANSCRIPTOMES 12.1 THE COMPONENTS OF THE TRANSCRIPTOME The mRNA fraction of a transcriptome is small but complex Short noncoding RNAs have diverse functions Long noncoding RNAs are enigmatic transcripts 12.2 TRANSCRIPTOMICS: CATALOGING THE TRANSCRIPTOMICS: CATALOGING THE TRANSCRIPTOMES OF CELLS AND TISSUES Microarray analysis and RNA sequencing are used to study the contents of transcriptomes Single-cell studies add greater precision to transcriptomics Spatial transcriptomics enables transcripts to be mapped directly in tissues and cells 12.3 SYNTHESIS OF THE COMPONENTS OF THE TRANSCRIPTOME	257 257 258 260 262 262 264
CHAPTER 12 TRANSCRIPTOMES 12.1 THE COMPONENTS OF THE TRANSCRIPTOME The mRNA fraction of a transcriptome is small but complex Short noncoding RNAs have diverse functions Long noncoding RNAs are enigmatic transcripts 12.2 TRANSCRIPTOMICS: CATALOGING THE TRANSCRIPTOMICS: CATALOGING THE TRANSCRIPTOMES OF CELLS AND TISSUES Microarray analysis and RNA sequencing are used to study the contents of transcriptomes Single-cell studies add greater precision to transcriptomics Spatial transcriptomics enables transcripts to be mapped directly in tissues and cells 12.3 SYNTHESIS OF THE COMPONENTS OF THE TRANSCRIPTOME RNA polymerases are molecular machines for	257 257 258 260 262 262 264 266 268
CHAPTER 12 TRANSCRIPTOMES 12.1 THE COMPONENTS OF THE TRANSCRIPTOME The mRNA fraction of a transcriptome is small but complex Short noncoding RNAs have diverse functions Long noncoding RNAs are enigmatic transcripts 12.2 TRANSCRIPTOMICS: CATALOGING THE TRANSCRIPTOMES OF CELLS AND TISSUES Microarray analysis and RNA sequencing are used to study the contents of transcriptomes Single-cell studies add greater precision to transcriptomics Spatial transcriptomics enables transcripts to be mapped directly in tissues and cells 12.3 SYNTHESIS OF THE COMPONENTS OF THE TRANSCRIPTOME	257 257 257 258 260 262 262 264 266
CHAPTER 12 TRANSCRIPTOMES 12.1 THE COMPONENTS OF THE TRANSCRIPTOME The mRNA fraction of a transcriptome is small but complex Short noncoding RNAs have diverse functions Long noncoding RNAs are enigmatic transcripts 12.2 TRANSCRIPTOMICS: CATALOGING THE TRANSCRIPTOMICS: CATALOGING THE TRANSCRIPTOMES OF CELLS AND TISSUES Microarray analysis and RNA sequencing are used to study the contents of transcriptomes Single-cell studies add greater precision to transcriptomics Spatial transcriptomics enables transcripts to be mapped directly in tissues and cells 12.3 SYNTHESIS OF THE COMPONENTS OF THE TRANSCRIPTOME RNA polymerases are molecular machines for	257 257 258 260 262 262 264 266 268

0	Synthesis of bacterial RNA is regulated by repressor and activator proteins	273
1	Synthesis of bacterial RNA is also regulated by control over transcription termination	276
2	Synthesis of eukaryotic RNA is regulated primarily by activator proteins	277
4 5	12.4 THE INFLUENCE OF RNA SPLICING ON THE COMPOSITION OF A TRANSCRIPTOME The splicing pathway for eukaryotic pre-mRNA introns	280 281
5	The splicing process must have a high degree of precision	282
6 8	Enhancer and silencer elements specify alternative splicing pathways	284
8	Backsplicing gives rise to circular RNAs	286
9 0 1 1 2	12.5 THE INFLUENCE OF CHEMICAL MODIFICATION ON THE COMPOSITION OF A TRANSCRIPTOME RNA editing alters the coding properties of some transcripts Chemical modifications that do not affect the sequence of an mRNA	287 287 289
- 3	12.6 DEGRADATION OF THE COMPONENTS OF THE TRANSCRIPTOME	290
3	Several processes are known for nonspecific RNA turnover	291
4	RNA silencing was first identified as a means of destroying invading viral RNA MicroRNAs regulate genome expression by	292
	causing specific target mRNAs to be degraded	293
7	SUMMARY	294
-	SHORT ANSWER QUESTIONS	295
7	IN-DEPTH PROBLEMS	295
7	FURTHER READING	296
0	CHAPTER 13 PROTEOMES	299
2	13.1 STUDYING THE COMPOSITION OF A	
52	PROTEOME The separation stage of a protein profiling project	299 300
4	The identification stage of a protein profiling project	303
б	Comparing the compositions of two proteomes Analytical protein arrays offer an alternative approach to protein profiling	305 306
0	13.2 IDENTIFYING PROTEINS THAT	
8	INTERACT WITH ONE ANOTHER	307
8	Identifying pairs of interacting proteins Identifying the components of multiprotein	307
0	complexes	309

Identifying proteins with functional interactions Protein interaction maps display the interactions within a proteome

31

341

13.3 SYNTHESIS AND DEGRADATION OF

THE COMPONENTS OF THE PROTEOME Ribosomes are molecular machines for making proteins During stress, bacteria inactivate their ribosomes	
in order to downsize the proteome Initiation factors mediate large-scale remodeling of eukaryotic proteomes	
The translation of individual mRNAs can also be regulated Degradation of the components of the proteome	
13.4 THE INFLUENCE OF PROTEIN PROCESSING ON THE COMPOSITION OF THE PROTEOME The amino acid sequence contains instructions for	3
protein folding Some proteins undergo proteolytic cleavage Important changes in protein activity can be brought about by chemical modification	(1) (1) (1)
13.5 BEYOND THE PROTEOME The metabolome is the complete set of metabolites present in a cell	3
Systems biology provides an integrated description of cellular activity	3
SUMMARY SHORT ANSWER QUESTIONS	3 3

332 **IN-DEPTH PROBLEMS**

332 **FURTHER READING**

CHAPTER 14 GENOME EXPRESSION IN THE CONTEXT OF CELL AND **ORGANISM**

14.1 THE RESPONSE OF THE GENOME TO EXTERNAL SIGNALS

Signal transmission by import of the extracellular signaling compound
Receptor proteins transmit signals across cell membranes
Some signal transduction pathways have few steps between receptor and genome
Some signal transduction pathways have many steps between receptor and genome
Some signal transduction pathways operate via second messengers

311	14.2 CHANGES IN GENOME ACTIVITY RESULTING IN CELLULAR	
311	DIFFERENTIATION	341
	Some differentiation processes involve changes to chromatin structure	341
313	Yeast mating types are determined by gene conversion events	343
313	Genome rearrangements are responsible for immunoglobulin and T-cell receptor diversities	344
316		
317	14.3 CHANGES IN GENOME ACTIVITY UNDERLYING DEVELOPMENT Bacteriophage λ: a genetic switch enables	346
318 320	a choice to be made between alternative developmental pathways	347
	<i>Bacillus</i> sporulation: coordination of activities in two distinct cell types	348
320	<i>Caenorhabditis elegans</i> : the genetic basis to positional information and the determination of cell fate	351
321 324	Fruit flies: conversion of positional information into a segmented body plan	353
325	Homeotic selector genes are universal features of higher eukaryotic development	354
326	Homeotic genes also underlie plant development	356
327	SUMMARY	357
327	SHORT ANSWER QUESTIONS	358
30	IN-DEPTH PROBLEMS	358
331	FURTHER READING	359

PART 4 HOW GENOMES REPLICATE AND EVOLVE

	CHAPTER 15 GENOME REPLICATION	361
335	15.1 THE TOPOLOGY OF GENOME REPLICATION	361
335	The double-helix structure complicates the replication process	362
336	The Meselson–Stahl experiment proved that replication is semiconservative	363
337	DNA topoisomerases provide a solution to the topological problem	365
339	Variations on the semiconservative theme	367
340	15.2 THE INITIATION PHASE OF GENOME REPLICATION	368
3/1	Initiation at the <i>E. coli</i> origin of replication	368

Origins of replication have been clearly defined in	
Origins in higher eukaryotes have been less easy	369
to identify	370
15.3 EVENTS AT THE REPLICATION FORK	371
DNA polymerases are molecular machines for making (and degrading) DNA	371
DNA polymerases have limitations that complicate genome replication	373
Okazaki fragments must be joined together to complete lagging-strand replication	374
15.4 TERMINATION OF GENOME	
REPLICATION Replication of the <i>E. coli</i> genome terminates	376
within a defined region	376
Completion of genome replication Telomerase completes replication of chromosomal	378
DNA molecules, at least in some cells	380
Telomere length is implicated in cell senescence and cancer	382
<i>Drosophila</i> has a unique solution to the end- shortening problem	383
15.5 REGULATION OF EUKARYOTIC	
GENOME REPLICATION Genome replication must be synchronized with	384
the cell cycle Origin licensing is the prerequisite for passing the	384
G1-S checkpoint	385 386
Replication origins do not all fire at the same time The cell has various options if the genome is	200
damaged	388
SUMMARY	388
SHORT ANSWER QUESTIONS	389
IN-DEPTH PROBLEMS	390
FURTHER READING	390
CHAPTER 16	
RECOMBINATION AND	
TRANSPOSITION	393
16.1 HOMOLOGOUS RECOMBINATION	393
The Holliday and Meselson–Radding models for homologous recombination	394
The double-strand break model for homologous recombination	396
RecBCD is the most important pathway for homologous recombination in bacteria	397
E. coli has alternative pathways for homologous recombination	398

Homologous recombination pathways in eukaryotes	399
16.2 SITE-SPECIFIC RECOMBINATION	400
Bacteriophage λ uses site-specific recombination during the lysogenic infection cycle Site-specific recombination is an aid in	400
construction of genetically modified plants	401
16.3 TRANSPOSITION Replicative and conservative transposition of DNA	402
transposons	402
Retroelements transpose replicatively via an RNA intermediate	403
SUMMARY	405
SHORT ANSWER QUESTIONS	406
IN-DEPTH PROBLEMS	406
FURTHER READING	406
CHAPTER 17	
	409
17.1 THE CAUSES OF MUTATIONS Errors in replication are a source of point mutations	409 410
Deplication errors can also load to insertion and	
Replication errors can also lead to insertion and deletion mutations	411
deletion mutations Mutations are also caused by chemical and physical mutagens 17.2 REPAIR OF MUTATIONS AND OTHER TYPES OF DNA DAMAGE	411
deletion mutations Mutations are also caused by chemical and physical mutagens 17.2 REPAIR OF MUTATIONS AND OTHER TYPES OF DNA DAMAGE Direct repair systems fill in nicks and correct some types of nucleotide modification	411 413
deletion mutations Mutations are also caused by chemical and physical mutagens 17.2 REPAIR OF MUTATIONS AND OTHER TYPES OF DNA DAMAGE Direct repair systems fill in nicks and correct some types of nucleotide modification Base excision repairs many types of damaged nucleotide	411 413 418
deletion mutations Mutations are also caused by chemical and physical mutagens 17.2 REPAIR OF MUTATIONS AND OTHER TYPES OF DNA DAMAGE Direct repair systems fill in nicks and correct some types of nucleotide modification Base excision repairs many types of damaged nucleotide Nucleotide excision repair is used to correct more	411 413 418 418
deletion mutations Mutations are also caused by chemical and physical mutagens 17.2 REPAIR OF MUTATIONS AND OTHER TYPES OF DNA DAMAGE Direct repair systems fill in nicks and correct some types of nucleotide modification Base excision repairs many types of damaged nucleotide	411 413 418 418 419
deletion mutations Mutations are also caused by chemical and physical mutagens 17.2 REPAIR OF MUTATIONS AND OTHER TYPES OF DNA DAMAGE Direct repair systems fill in nicks and correct some types of nucleotide modification Base excision repairs many types of damaged nucleotide Nucleotide excision repair is used to correct more extensive types of damage Mismatch repair corrects replication errors Single- and double-strand breaks can be repaired Some types of damage can be repaired by	 411 413 418 418 419 421
deletion mutations Mutations are also caused by chemical and physical mutagens 17.2 REPAIR OF MUTATIONS AND OTHER TYPES OF DNA DAMAGE Direct repair systems fill in nicks and correct some types of nucleotide modification Base excision repairs many types of damaged nucleotide Nucleotide excision repair is used to correct more extensive types of damage Mismatch repair corrects replication errors Single- and double-strand breaks can be repaired Some types of damage can be repaired by homologous recombination	411 413 418 418 419 421 422
deletion mutations Mutations are also caused by chemical and physical mutagens 17.2 REPAIR OF MUTATIONS AND OTHER TYPES OF DNA DAMAGE Direct repair systems fill in nicks and correct some types of nucleotide modification Base excision repairs many types of damaged nucleotide Nucleotide excision repair is used to correct more extensive types of damage Mismatch repair corrects replication errors Single- and double-strand breaks can be repaired Some types of damage can be repaired by homologous recombination If necessary, DNA damage can be bypassed during genome replication	 411 413 413 418 419 421 422 423
deletion mutations Mutations are also caused by chemical and physical mutagens 17.2 REPAIR OF MUTATIONS AND OTHER TYPES OF DNA DAMAGE Direct repair systems fill in nicks and correct some types of nucleotide modification Base excision repairs many types of damaged nucleotide Nucleotide excision repair is used to correct more extensive types of damage Mismatch repair corrects replication errors Single- and double-strand breaks can be repaired Some types of damage can be repaired by homologous recombination If necessary, DNA damage can be bypassed during	 411 413 418 418 419 421 422 423 425
deletion mutations Mutations are also caused by chemical and physical mutagens 17.2 REPAIR OF MUTATIONS AND OTHER TYPES OF DNA DAMAGE Direct repair systems fill in nicks and correct some types of nucleotide modification Base excision repairs many types of damaged nucleotide Nucleotide excision repair is used to correct more extensive types of damage Mismatch repair corrects replication errors Single- and double-strand breaks can be repaired Some types of damage can be repaired by homologous recombination If necessary, DNA damage can be bypassed during genome replication Defects in DNA repair underlie human diseases,	 411 413 413 418 419 421 422 423 425 426
deletion mutations Mutations are also caused by chemical and physical mutagens 17.2 REPAIR OF MUTATIONS AND OTHER TYPES OF DNA DAMAGE Direct repair systems fill in nicks and correct some types of nucleotide modification Base excision repairs many types of damaged nucleotide Nucleotide excision repair is used to correct more extensive types of damage Mismatch repair corrects replication errors Single- and double-strand breaks can be repaired Some types of damage can be repaired by homologous recombination If necessary, DNA damage can be bypassed during genome replication Defects in DNA repair underlie human diseases, including cancers	 411 413 418 418 419 421 422 423 425 426 427
deletion mutations Mutations are also caused by chemical and physical mutagens 17.2 REPAIR OF MUTATIONS AND OTHER TYPES OF DNA DAMAGE Direct repair systems fill in nicks and correct some types of nucleotide modification Base excision repairs many types of damaged nucleotide Nucleotide excision repair is used to correct more extensive types of damage Mismatch repair corrects replication errors Single- and double-strand breaks can be repaired Some types of damage can be repaired by homologous recombination If necessary, DNA damage can be bypassed during genome replication Defects in DNA repair underlie human diseases, including cancers SUMMARY	 411 413 418 419 421 422 423 425 426 427 427 427 427

8.1 GENOMES: THE FIRST 10 BILLION 'EARS 4 he first biochemical systems were centered on RNA	31 431 431
'EARS 4 he first biochemical systems were centered on RNA	
he first biochemical systems were centered on RNA	
•	431
he first DNA genomes	433
low unique is life?	434
8.2 THE EVOLUTION OF INCREASINGLY	
:OMPLEX GENOMES 4	436
ienome sequences provide extensive evidence of	
Serve and processor	436
variety of processes could result in gene	
•	439
	440
maller duplications can also be identified in the	
	443
oth prokaryotes and eukaryotes acquire genes	444
	444
ienome evolution also involves rearrangement of xisting gene sequences 4	446
here are competing hypotheses for the origins of	
	448
he evolution of the epigenome 4	450

18.3 GENOMES: THE LAST 6 MILLION YEARS 451 The human genome is very similar to that of the 451 chimpanzee Paleogenomics is helping us understand the recent evolution of the human genome 453 **18.4 GENOMES TODAY: DIVERSITY IN** POPULATIONS 455 The origins of HIV/AIDS 455 The first migrations of humans out of Africa 457 The diversity of plant genomes is an aid in crop breeding 459 **SUMMARY** 460 **SHORT ANSWER QUESTIONS** 462 **IN-DEPTH PROBLEMS** 462 **FURTHER READING** 463 **GLOSSARY** 465 **INDEX** 509

CHAPTER 18 HOW GENOMES EVOLVE	431
18.1 GENOMES: THE FIRST 10 BILLION	
YEARS	431
The first biochemical systems were centered on RNA	431
The first DNA genomes	433
How unique is life?	434
18.2 THE EVOLUTION OF INCREASINGLY	
COMPLEX GENOMES	436
Genome sequences provide extensive evidence of	
past gene duplications	436
A variety of processes could result in gene	
duplication	439
Whole-genome duplication is also possible	440
Smaller duplications can also be identified in the	
human genome and other genomes	443
Both prokaryotes and eukaryotes acquire genes	
from other species	444
Genome evolution also involves rearrangement of	440
existing gene sequences	446
There are competing hypotheses for the origins of introns	448
The evolution of the epigenome	450
the evolution of the epigenome	-JU

18.3 GENOMES: THE LAST 6 MILLION 451 YEARS The human genome is very similar to that of the 451 chimpanzee Paleogenomics is helping us understand the recent evolution of the human genome 453 **18.4 GENOMES TODAY: DIVERSITY IN** 455 POPULATIONS The origins of HIV/AIDS 455 457 The first migrations of humans out of Africa The diversity of plant genomes is an aid in crop 459 breeding 460 **SUMMARY** 462 SHORT ANSWER QUESTIONS 462 **IN-DEPTH PROBLEMS** 463 FURTHER READING **GLOSSARY** 465 509 **INDEX**