Handbook of Biomolecules

Fundamentals, Properties, and Applications

Edited by

Chandrabhan Verma

Interdisciplinary Center for Research in Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

Dakeshwar Kumar Verma

Department of Chemistry, Government Digvijay Autonomous Postgraduate College, Rajnandgaon, Chhattisgarh, India

Contents

Contributors			xvii	2.	Carbohydrate: Introduction and fundamentals		
Par					Ashish Kumar Asatkar and Ranjan Kumar Basak		
	Fundamental and basics of piomolecules				2.1 Introduction 2.2 Classification of carbohydrates	25 25	
1.	synt	ino acids: Classification, thesis methods, reactions,			2.2.1 Classification based on physical properties2.2.2 Classification based on chemical	25	
	and	determination			properties	25	
		tdev Dewangan, Elyor Berdimurodov, Dakeshwar Kumar Verma			2.2.3 Classification based on functional groups	26	
	1.1	Introduction	3		2.2.4 Classification based on reducing nature	28	
		Classification	4		2.2.5 Chemistry of p-glucose	29	
		1.2.1 Neutral amino acid	4		2.3 Configuration of p-glucose	38	
		1.2.2 Basic amino acid	7		2.3.1 Chemistry of p-fructose	42	
		1.2.3 Acidic amino acid	8		2.3.2 Interconversions	46	
	1.3	Synthesis of amino acids	9		2.4 Disaccharides	50	
		1.3.1 Chemical synthesis	9		2.4.1 Chemistry of sucrose	50	
		1.3.2 Biosynthesis of amino acids	11		2.4.2 Chemistry of lactose	50	
		1.3.3 Fermentation process	11		2.4.3 Chemistry of maltose	51	
		1.3.4 Extraction from protein			2.4.4 Chemistry of trehalose	52	
		hydrolysis	11		2.5 Polysaccharides	52	
	1.4	Physical properties	11		2.5.1 Chemistry of starch	52	
		1.4.1 Zwitter ion	12		2.5.2 Chemistry of cellulose	54	
		1.4.2 Isoelectric point	12		2.5.3 Chemistry of glycogen	55	
		Reactions of amino acids	14		2.5.4 Chemistry of chitin	55	
	1.6	Sequencing the peptide: Terminal residue analysis 1.6.1 N-terminal determination of	17		References	55	
		amino acid	18	3.	Nucleic acids: Components,		
		1.6.2 Protein sequence	19	•	nomenclature, types, and		
	1.7	Stereochemistry of amino acids	21		protection method		
		1.7.1 D, L form of amino acids/relative configuration	21		Mamta Tripathi, Avijit Sarkar, and Mithlesh Mahilang		
		1.7.2 R/S system (absolute	21		· ·		
	4.0	configuration)	21		3.1 Introduction	57	
	1.8	Applications of amino acids	21		3.2 Types of nucleic acids and their		
	1.9	Conclusion	22 22		components	57	
		Useful links flict of interest	22		3.2.1 Components of nucleotides	58	
			23		3.2.2 Pentose sugar	58	
	Kete	erences	23		3.2.3 Nucleoside and nucleotide	60	

3.3 Nomenclature of nucleic acids

	3.4	Structure and function of DNA	62	acids in C terminal of peptide	
		3.4.1 Watson and Crick model	65	bond	80
		3.4.2 The biological function of		4.2.6 Determination of various amino	
		DNA	66	acids in the N terminal of peptide	
		3.4.3 Functions of RNA in protein		bond	80
		synthesis	66	4.2.7 Enzymatic hydrolysis of peptide	
		3.4.4 RNA as hereditary		bond	82
		information	66	4.3 Classification of protein	84
	3.5	Difference between DNA	00	4.3.1 Traditional classification	84
	3.3	and RNA	67	4.3.2 Based on their structure	84
	3.6	Protection method of DNA	01	4.3.3 Based on composition	85
	3.0	and RNA	67	4.3.4 Classification of protein-based on	00
		3.6.1 Protecting groups for bases	67	their biological function	86
		3.6.2 Protecting groups for secondary	07	4.4 Structure of protein	87
		hydroxyl functions	68	4.4.1 Primary structure	87
		3.6.3 Protecting groups for the primary	00	4.4.2 Secondary structure of protein	88
		hydroxyl group	68	4.4.3 Tertiary structure of protein	91
		3.6.4 Protecting groups for	00	4.4.4 Quaternary structure of	91
		phosphoesters and the		protein	94
			68	•	94
	27	phosphorylation method		4.5 Property of protein	94
	3.7	Solid phase synthesis	69	4.5.1 Physical properties of protein	97
		3.7.1 Solid-phase synthesis of DNA and RNA	60	4.5.2 Chemical property of proteins	97
			69 60	4.6 Importance of peptide	102
		3.7.2 Phosphodiester synthesis	69 70	1	103
		3.7.3 Phosphotriester synthesis	70 70	4.6.1 Protein/peptides conjugated NPs	102
	2.0	3.7.4 Phosphite triester synthesis	70		103
	3.8	Replication	71 72	4.6.2 Peptide as a drug for disease	104
		3.8.1 Polymerase chain reaction	72 72	0	104
	3.0	3.8.2 Ligase chain reaction	73		105
	3.9	Applications of DNA and RNA	73	O	106
		3.9.1 Genetic engineering	73 73	,	107
		3.9.2 DNA nanotechnology	73 73	4.6.6 Act as a drug and gene	
		3.9.3 DNA profiling	73	, ,	108
		3.9.4 DNA profiling	74	4.6.7 Gene delivery through protein	
		3.9.5 DNA enzymes or catalytic	~.		110
		DNA	74	• •	111
		Conclusion	74	References	111
	Kete	erences	74		
				5. Vitamins and metabolites	
4.		teins: Structure, properties, i importance		Shippi Dewangan and Amarpreet K. Bhatia	
		•			119
	Bha	vabhuti Prasad, Amit Kumar Shiv, nash Chand Bharati, and		5.2 Classification of vitamins	119
		nasn Chanu bharau, anu hucharan Mallick		5.3 Sources of vitamins	119
				5.4 Nomenclature and structural	
	4.1	Introduction	77	properties of vitamins	120
	4.2	Peptide	78	5.4.1 Vitamin A	122
		4.2.1 Nomenclature for amino acids and		5.4.2 Vitamin D	122
		peptides	78		123
		4.2.2 Features of peptide bond	79		123
		4.2.3 Polarization of peptide bond	79		124
		4.2.4 Synthesis of peptide bond using			124
		protecting group	79		125
		• • •		•	

62

4.2.5 Determination of various amino

	5.4.8 Vitamin B ₃ (niacin)	125		7.	2.2 Endocrine gland and their	
	5.4.9 Vitamin B_5 (pantothenic acid)	126			hormone	153
	5.4.10 Vitamin B ₆	126		7.3 Pla	ant hormone	162
	5.4.11 Vitamin H (Biotin)	127		7.	3.1 Auxins	162
	5.4.12 Folate (folic acid)	127		7.	3.2 Gibberellins	164
	5.5 Metabolism of the vitamins	128		7.	3.3 Cytokinins (CK)	165
	5.6 Metabolic functions of the			7.	3.4 Abscisic acid (ABA)	166
	vitamins	129		7.	3.5 Ethylene	166
	5.7 Excretion of vitamins as			7.	3.6 Jasmonate (JA)	167
	metabolites	129		7.	3.7 Brassinosteroids (BR)	167
	5.8 Conclusion	131		7.3	3.8 Salicylic acid	168
	References	131		7.3	3.9 Strigolactones (SL)	169
				7.4 Cd	onclusion	170
_	T			Refere	nces	171
ь.	Enzymes, coenzymes,					
	and pigments		Я	Alkal	oids and terpenoids:	
	Santosh Bahadur Singh,				nesis, classification, isolation	
	Praveen Kumar Tandon,					
	Parmesh Kumar Chaudhari, and				ourification, reactions, and	
	Dakeshwar Kumar Verma			appii	cations	
	6.1 Enzymes: A historical introduction	133		Mayur	Mausoom Phukan,	
	6.1.1 Classification	135		Samso	n Rosly Sangma, Debajit Kalita,	
	6.1.2 Enzyme chemistry: Properties				Bora, Pranjal Pratim Das,	
	and reactions	136			Manoj, Pranay Punj Pankaj, apang Jamir,	
	6.1.3 Extraction/synthetic methods	139		Dakesl	hwar Kumar Verma, G Bupesh,	
	6.1.4 Applications	139			Meenakshi Sundaram	
	6.2 Coenzymes: A historical			0 1 1	-4 d4:	177
	introduction	139			ntroduction	177
	6.2.1 Classification	140			Distribution/occurrence	178
	6.2.2 Coenzyme chemistry: Properties				Classification .3.1 Classification of alkaloids	178 178
	and reactions	140				179
	6.2.3 Extraction/synthetic methods	140			.3.2 Classification of terpenoids	1/9
	6.2.4 Applications	142			xtraction and purification of alkaloids	179
	6.3 Pigments: A historical introduction	142			nd terpenoids .4.1 Extraction	179
	6.3.1 Classification	144			.4.1 Extraction	
	6.3.2 Pigment chemistry: Properties				iosynthesis of alkaloids	181 182
	and reactions	144			.5.1 Biosynthesis of alkaloids from	102
	6.3.3 Extraction/synthetic methods	146		O.	amino acid lysine	182
	6.3.4 Applications	147		Я	.5.2 Biosynthesis of alkaloids from	102
	6.4 Conclusion and future perspectives	147		U.	amino acids ornithine and	
	References	147			arginine	184
	Further reading	149		Я	.5.3 Biosynthesis of alkaloids	104
				O.	from amino acid aspartic	
_	A 1				acid (and "nicotinic acid"	
/.	Animal and plant hormone				vitamin)	189
	Abinash Chand Bharati, Bhavabhuti Prasad,			8	.5.4 Biosynthesis of alkaloids from	109
	Sadhucharan Mallick,				amino acid tryptophan	189
	Devendra Singh Masram, Ajay Kumar,			8.6 B	iosynthesis of terpenoids	189
	and Gyanendra Kumar Saxena				.6.1 Biosynthesis of TAXOL	189
	7.1 Introduction	151			.6.2 Biosynthesis of FAAOE	189
	7.2 Animal hormone	152			.6.3 Biosynthesis of squarene	189
	7.2.1 Classification of hormones				.6.4 Biosynthesis of caroteriolos	109
	in animals	152		U	rubber	192
					140001	17/

	8.7	Analytical methods for alkaloids		10.	Liquid-liquid extraction	
		and terpenoids	193		K.J. Jisha, K.K. Athira, V.P. Priyanka, and	
		8.7.1 Analysis of alkaloids	194		Ramesh L. Gardas	
	0.0	8.7.2 Analysis of terpenoids	197		10.1 Introduction	227
	8.8	Biological role of alkaloids and	100		10.2 Organic solvent-based LLE	228
		terpenoids	199 199		10.3 Water-based LLE	231
		8.8.1 Anticancer	199		10.3.1 Polymer-based LLE	231
		8.8.2 Antibacterial, antifungal, and	200		10.3.2 Surfactant-/detergent-based	401
		antioxidant 8.8.3 Antiviral	200		LLE	232
			200		10.3.3 Ionic liquid-based LLE	233
		8.8.4 Antitubercular	200		10.3.4 DES-based LLE	234
		8.8.5 Antimalarial and antiparasitic	200		10.4 Conclusions	235
		8.8.6 Anti-inflammatory	201		Acknowledgments	236
		8.8.7 Neuroprotection	201		References	236
		8.8.8 Immunomodulator and	201		References	200
		stimulant	201 201	11	Microfluidic devices	
		8.8.9 Antihypertension	201	11.	Microlialaic devices	
		8.8.10 Antidiabetic and anti-obesity			Sayanasri Varala, T. Satish, Alka Kumari, and	
		8.8.11 Bioinsecticide	202 202		Ajaya Kumar Singh	
	8.9	Application	202		11.1 Introduction	241
		8.9.1 Applications of alkaloids			11.1.1 Liquid-liquid extraction in	
	0.40	8.9.2 Applications of Terpenoids	202		microstructures	242
		Conclusion	203		11.1.2 Working of microfluidic	2-,2
		erences	204		devices	243
	rurt	her reading	213		11.1.3 Types of microfluidic flows	243
					11.1.4 Types of microfluidic	2-1-2
_					devices	244
	til				11.1.5 Approaches for liquid-liquid	2-1-1
lso	latio	on, purification and			extraction using microfluidics	
		tion			devices	244
					11.1.6 Active and passive separation	
9.	Chr	omatography			techniques	245
		· ,			11.1.7 Biomolecules separation	250
	jasa	eep Kaur and Akhil Saxena			11.2 Challenges and the future	252
	9.1	Introduction	217		11.3 Conclusions	254
	1	9.1.1 Principles of chromatography	217		Acknowledgment	254
		9.1.2 Chromatography parts	218		References	254
		9.1.3 Types of chromatography	218		The remotes	
		Applications of chromatography	224			
		9.2.1 Chromatographic applications		Par	+ 111	
		in antibody purification	224			
	1	9.2.2 Chromatography in relation to			ection methods of	
		antifungal agents	224	pioi	nolecules	
		9.2.3 Paper chromatography in the				
		determination of soil health	224	12.	Biosensors: Detection of	
		9.2.4 Applications of affinity			biomolecules by biosensors	
		chromatography in the			Amarnraat K. Rhatia and Shinni Dowangan	
		pharmaceutical field	224		Amarpreet K. Bhatia and Shippi Dewangan	
		9.2.5 Determination of free fatty acids			12.1 Introduction	259
		by gas chromatography	224		12.2 Main parts related to biosensor	259
	9.3	Conclusion	225		12.2.1 Recognition	260
	Refe	rences	225		12.2.2 Transducers for biosensor	261
	Web	links	225		12.2.3 Signal processing	263

	12.3 Biosensors f		263		14.4 14.5	Nanomechanical sensors Fundamental working principles and	294
		ensors for nucleic acid ction	263			operation modes of nanomechanical biosensors	294
	12.3.2 Biose	ensors for glucose			14.6	Functionalization of nanomechanical	
	dete	ction	266			sensors	295
	12.3.3 Biose	ensors for cholesterol				14.6.1 Coating of receptor layers	295
	dete	ction	267			14.6.2 Double-side coating	296
	12.4 Conclusion		269		14.7	Carbon nanotube-based	
	References		269			nanomechanical sensor	296
					14.8	Graphene oxide-based	
13	Flectrochemic	cal biosensors for				nanomechanical sensor in the	
13.	biomolecules	ai biosciisors roi				static mode	296
	biolificiecules				14.9	Nanomechanical sensors for	
		san Zhou, Chijia Zeng,				biological applications	296
	Lei Guo, Bin Qu,	Yang Zhou,			14.10	Nanomechanical sensors for	
	and Qin Zhou					chemical and environmental	
	13.1 Introduction	1	276			applications	297
	13.2 EC biosenso	rs for biomolecules	277		14.11	Nanomechanical sensing of	
	13.2.1 Smal	l biomolecules	277			biomolecules	297
	13.2.2 Nucl	eic acids	279			Conclusions	297
	13.2.3 Prote	ein and amino acids	279		Refere	ences	298
	13.2.4 Lipid	ls	279				
	13.2.5 Carb	ohydrates and glycan	282	15.	Colo	orimetric and fluorescence	
	13.3 Setup		283		Elia G	rueso, Rosa M. Giráldez-Pérez,	
	13.4 Materials an	d equipment	284			afael Prado-Gotor	
	13.5 Validation at	nd quality assurance	285		154	Overview State the verse veh	
	13.6 Step-by-step	o method details	286			Overview: State the research	200
		1 pretreatment of the WE				question(s) to be answered	299
		ce (take the gold WE as				15.1.1 Colorimetric and fluorescence molecular probes	200
		kample)	286			15.1.2 Conjugated polymers	299 301
		2 Biosurface preparation				15.1.3 Metal—organic frameworks	303
		ne WE	286			15.1.4 Schiff base fluorescent	303
	•	3 Characterization of				probes	305
		C biosensors and analyte				15.1.5 Supramolecular coordination	303
		ction assay	287			complexes	306
	•	4 data analysis	287		1	15.1.6 Nanoparticles	308
		mon procedural	207			Simple colorimetric assays using	200
	mista	ikes	287			JV-visible spectrophotometric	
	13.7 Top tips	d law avada alaa	287			echnique	311
	13.8 Learning and outcomes	i knowledge	207			15.2.1 Setup for colorimetric	
	13.9 Conclusions	challenges and	287			assays	311
	solutions	, chanenges, and	287		1	15.2.2 Materials and equipment for	
	References		288			colorimetric assays	312
	References		200		1	15.2.3 Validation and quality	
						assurance for colorimetric	
14.	Nanomechani	cal sensors				assays	313
	Mahendra Sahu				1	15.2.4 Common Procedural Mistakes	
						for colorimetric assays	313
	14.1 Introductio		293		1	5.2.5 Step-by-step method details for	
	14.1.1 Sens		293			colorimetric assays	314
	14.2 Classification		293			CIELab color space	315
	14.3 Characteris	tics of sensors	294		1	5.3.1 Setup for CIELab	315

		15.3.2 Materials and Equipment for	24-	16.9 Challenges and solutions	344
		CIELab	317	16.10 Conclusions	345
		15.3.3 Validation and quality		Acknowledgments	345
		assurance for CIELab	317	Conflict of interest	345
		15.3.4 Common procedural mistakes		References	345
		for CIELab	317		
	15.4	Fluorescence and confocal microscopy			
		in biological tissues.		Part IV	
		Immunofluorescence	318	Current applications	
		15.4.1 Setup for fluorescence		of biomolecules	
		microscopy and		or biomoiecules	
		immunofluorescence	319	47 C (1' (' (
		15.4.2 Materials and equipment for		17. Current applications of	
		fluorescence microscopy and		biomolecules as anticoronavirus	
		immunofluorescence	320	drugs	
		15.4.3 Validation and quality		Mohd Yusuf, Saurabh Sharma,	
		assurance for fluorescence		Shafat Ahmad Khan, Lalit Prasad, and Nafisa	
		microscopy and			
		immunofluorescence	322	17.1 Introduction	355
		15.4.4 Common procedural mistakes		17.2 Prospects on COVID-19 infection and	
		for fluorescence microscopy		early global expansion	357
		and immunofluorescence	322	17.3 Traditional Chinese medicine	359
		15.4.5 Step-by-step method details for		17.4 Indian Ayurveda	360
		fluorescence microscopy and		17.4.1 Ashwagandha (<i>Withania</i>	
		immunofluorescence	324	somnifera)	362
	15.5	General challenges and solutions	325	17.4.2 Guduchi (<i>Tinospora</i>	
		Learning and knowledge outcomes	326	cordifolia)	363
		Top tips	326	17.4.3 Yashtimadhu (<i>Glycyrrhiza</i>	
		Websites	327	glabra)	365
		rences	327	17.4.4 Pippali (P. longum)	365
	itere.	renees	32,	17.4.5 AYUSH-64	365
				17.5 Socioeconomic effects of	
16.	Mas	ss spectrometry		coronavirus	366
		•		17.6 Conclusion	367
		ateswara R. Naira, Mukul S. Kareya,		References	367
	Asha	A. Nesamma, and Pannaga P. Jutur		Further reading	368
	16.1	Introduction	334		
	16.2	Mass spectrometer: Instrumental		18. Current application of	
		setup	334	biomolecules in biomolecular	
	16.3	Ionization source	335	engineering	
		16.3.1 Mass analyzer	335	o o	
	16.4	_ ·	337	Ashvika Pathania, Rajesh Haldhar, and	
	16.5	·		Seong-Cheol Kim	
		in mass spectrometry	337	18.1 Introduction	371
	16.6	Methodology	338	18.2 Biofuels	374
		16.6.1 Metabolomics	338	18.2.1 Bioremediation of persistent	
		16.6.2 Proteomics	339	organic pollutants (POPs)	374
	16.7			18.3 Challenges in the real world	380
	• •	spectrometry	339	18.4 Conclusion	380
	16.8	Translational research applications		Declaration of interest statement	381
		of mass spectrometry	341	Conflict of interest statement	381
		16.8.1 Biomedicine	341	Author's contributions	381
		16.8.2 Nutrition	341	References	381
			- 11		-01

19.		lication of biomolecules iochemistry				20.4.4 RNA interference technology	402
	Amai	rpreet K. Bhatia and Evneet Kaur Bhatia				20.4.5 Genetic vaccine	403
		•			20 5	20.4.6 Aptamers	403 404
		Introduction	385		20.5 20.6	Enzymes and biotechnology Vitamins in biotechnology	404
		Application of carbohydrate in	205		20.7	Bioengineered lipids	407
		biochemistry	385		20.7	20.7.1 Solid lipid nanoparticles	407
		19.2.1 Energy production	385			20.7.2 Single-cell oil	408
		19.2.2 Building macromolecules	386		20.8	Hormones bioactivity	408
		19.2.3 Sparing protein	386 387		20.9	Applications of flavonoids	400
		19.2.4 Lipid metabolism	387 387		20.3	and alkaloids in biotechnology	408
		19.2.5 Drug delivery Application of protein in	30/		20.10	Conclusions and future	.00
		biochemistry	387		200	perspectives	409
		19.3.1 As enzyme	387		Refer	ences	409
		19.3.2 Proteins of the blood serum	388		110.01		.02
		19.3.3 Antibody	388				
		19.3.4 Receptors	389	21.	Curr	ent applications of	
		19.3.5 Structural proteins	389			nolecules in biomedical	
		Application of lipid in biochemistry	392		engi	neering	
		19.4.1 Steroids	392		•	· ·	
		19.4.2 Steroid hormones	393			ela Ferrante, Vera Alejandra Alvarez, Imena Soledad Gonzalez	
		19.4.3 Intracellular second			anu ji	mena Soledad Gonzalez	
		messengers	394			Introduction	419
	19.5	Application of nucleic acid in			21.2	Biomedical engineering	
		biochemistry	394			biopolymers	420
		19.5.1 Deoxyribonucleic acid	394			21.2.1 Collagen and gelatin	421
		19.5.2 DNA's replication	394			21.2.2 Pectin	421
		19.5.3 Ribonucleic acid in protein				21.2.3 Chitosan	421
		synthesis	395			21.2.4 Chondroitin sulfate	422
	19.6	Conclusion	396			21.2.5 Cellulose	422
	Refer	rences	396			21.2.6 Sodium alginate	422
						21.2.7 Others biomolecules	422
						21.2.8 Scaffolds	422
20.	Curi	rent applications of				21.2.9 Hydrogels	423
	bion	nolecules in biotechnology				Wound healing	423
		07				21.3.1 Origin of wounds	423
		na Madhariya, Shubha Diwan, hankar Chauhan,				21.3.2 Biomedical engineering in	400
		ndra Kumar Chandrawanshi,				wounds	423
	and P	Pramod Kumar Mahish				21.3.3 Epithelial wounds	423
	20.1	Introduction	397			21.3.4 Artificial skin grafts	425
		Applications of amino acid and	391			Tissue engineering and regenerative	106
	20.2	peptides	398			medicine	426
	20.3	Biosignificance of microbial	390			21.4.1 Odontology	426
	20.3	polysaccharides	400			21.4.2 Bone and cartilage tissue 21.4.3 Ophthalmology	427
	20.4	Nucleic acid biotechnological	400				429
	40.T	applications	402			21.4.4 Tympanic membrane 21.4.5 Cardiac tissue	430
		20.4.1 Synthetic primer	402			21.4.5 Cardiac tissue 21.4.6 Vascular tissue	430
		20.4.2 Locked nucleic acid	402			21.4.6 Vascular tissue 21.4.7 Nervous tissue	431
		20.4.3 DNA-based thermometer	102			Conclusions	431 432
		and pH meter	402		Refere		432
							734

22.	Curr	ent applications of			23.3	Chemi	stry of flavonoids	46
~~.		nolecules in					Flavones	469
		harmaceuticals and				23.3.2	Flavonols	469
		discovery				23.3.3	Isoflavones	47
	urug	discovery				23.3.4	Flavanones	47
	Ali Ra	stegari, Homa Faghihi, and				23.3.5	Flavan-3-ol	472
	Zohre	eh Mohammadi				23.3.6	Anthocyanidin	473
	22.1	Introduction	440		23.4	Biosynt	hesis of flavonoids	473
	22.2	Biomolecules as biopharmaceutical			23.5	Isolatio	n of flavonoids	475
		agents	440			23.5.1	Chromatography—An	
		22.2.1 Cytokines	440				essential technique for the	
	22.3	Interferon	441				isolation of flavonoids	475
	22.4	TNF-α	441		23.6		ition of flavonoids	476
	22.5	Interleukins	442			23.6.1	Flavan and isoflavan	
	22.6	GCSF/GM-CSF	442				derivatives	476
	22.7	Erythropoietin	442				Flavanone derivatives	476
		22.7.1 Antibodies	444			23.6.3	Flavanol and Isoflavanol	
	22.8	Hormones	449				derivatives	477
		22.8.1 Insulin	449		23.7		ition of flavonoids	477
		22.8.2 Glucagon	452				Acid-base property	477
		22.8.3 Growth hormone	452				Antioxidant property	477
		22.8.4 Gonadotropins	453				Hepatoprotective activity	479
	22.9	Vaccines	453				Anticholinesterase activity	480
	22.10	Nucleic acids	455				Antiviral activity	480
	22.11	Biomolecules for drug discovery	458				Anti-inflammatory action	481
		22.11.1 Discovering new mechanisms,					Antitumor activity	481
		drug targets, and target				23.7.8	Combating oxidative stress	
		validation for diseases	458				in plants	482
		22.11.2 Acting as therapeutic					Anti-ulcer activity	482
		agents	458				Antimalarial activity	483
		22.11.3 Rapid and accurate screening					Antifungal activity	483
		of drug candidate			23.8	Toxicity		483
		molecules	458		23.9		perspective	484
		22.11.4 Catalyzing the synthesis				Conclu	sion	484
		process of drugs			Refer	ences		484
		molecules	459					
	22.12	Immunogenicity and adverse		24.	Stere	oids: Is	olation, purification,	
		effects	459		syntl	hesis, r	eactions, and	
		Future and challenges	461		appl	ication	S	
	Refere	ences	461		V	J n	anden Ashutash Dandau	
							aonkar, Ashutosh Pandey, and Bhawana Jain	
2 3.		onoids: Chemistry,						
		ynthesis, isolation, and				Introduc		489
	biolo	ogical function				•	of steroids	491
	Rhava	bhuti Prasad, Sadhucharan Mallick,					of steroids	492
		sh Chand Bharati,					n of steroids	492
		hivjeet Singh					olvent extraction	493
		· ·	467				olid-phase extraction	494
	23.1	Introduction The general structure of	467		2		lydrolysis of steroid	••
	23.2	The general structure of flavonoids	167				onjugates	494
		HAYOHOIUS	467			24.4.4 Ir	nmunoaffinity extraction	494

		mole	ction employing cularly imprinted polymers	405			25.2.2	Carboxymethyl and hydroxyethyl cellulose-based corrosion inhibitors	509
	o		estricted access material	495			25 2 2		309
	24.5	Purification		495			25.2.3	Carrageenan-based corrosion	£11
			mn chromatography	495			25.24	inhibitors	511
			layer chromatography	496			25.2.4	Chitosan-based corrosion	
			r chromatography	496				inhibitors	512
			iquid chromatography	497			25.2.5	Cyclodextrins-based corrosion	
			performance liquid					inhibitors	514
			natography	497			25.2.6	Gum-based corrosion	
	24.6		spectrometry in steroid					inhibitors	515
		assays		497			25.2.7	Carbohydrates derivatives	
	24.7		of novel catalytic protocols					functionalized from organic	
		for steroid sy		498				compounds	517
	24.8		plications of steroids	498			25.2.8	A brief account on synthetic	
			ration of steroids as					carbohydrate derivatives as	
		-	esic adjuncts	499				corrosion inhibitors	517
			ral steroid injection	499			25.2.9	Density functional theory analysis	
			ids in hyperreactive					on the inhibition mechanism of	
		airwa		500				carbohydrates	517
		•	ation pneumonitis	501			25.2.10	Experimental analysis on the	
			ntubation laryngeal					inhibition mechanism of	
		edem		501				carbohydrates	517
			d and anaphylaxis	501			Conclus	ions	520
			cation of steroids in			Refe	rences		520
			ral edema	501					
		24.8.8 Effica	cy of steroids in cardiac						
		arrest		501	26.	Am	ino acio	ds and nucleic acids as	
			of corticosteroid in the			gree	en corr	osion inhibitors	
			gement of COVID-19	501		•			
		Conclusion		502		Kajes	sh Haldha	ar, Seong-Cheol Kim, , and Dakeshwar Kumar Verma	
	Refe	ences		502		Oille	u Daguag	, and Dakesnwar Kumar Verma	
						26.1	Introduc	ction	523
25.			as green corrosion			26.2	Classific	ation, properties,	
	inhi	bitors					and app	lications of amino and	
	Elvor	Pardimurado	ov, Abduvali Kholikov,				nucleic a	acids	524
		ndam Akbarov					26.2.1	Classification	524
			Verma, Reema Sahu,				26.2.2 F	Properties	524
	Moha	med Rbaa, C	mar Dagdag, and				26.2.3 A	Applications	524
	Rajes	h Haldhar				26.3	Differen	ce between amino acids	
	25 1	Introduction		507			and nucl	leic acids	525
			rrosion nature of	307		26.4	Amino a	nd nucleic acids as	
			ydrates natural polymer	507			corrosio	n inhibitors	527
				307		26.5	Metals		529
		25 1 2 Clacci	lication properties and						
			fication, properties, and			26.6	Techniqu	ues	529
		applic	ations of carbohydrates					ues ism of adsorption	529 530
		applic and th	ations of carbohydrates eir derivatives as	500		26.7		sm of adsorption	
		applic and th corros	ations of carbohydrates eir derivatives as ion inhibitor	508		26.7 26.8	Mechani Conclusi	sm of adsorption	530
	25.2	applic and th corros Carbohydrate	ations of carbohydrates eir derivatives as			26.7 26.8 Decla	Mechani Conclusi aration o	ism of adsorption ion	530 532
	25.2	applic and th corros Carbohydrate inhibitors	ations of carbohydrates eir derivatives as ion inhibitor as green corrosion	508 508		26.7 26.8 Decla Conf	Mechani Conclusi aration o	ism of adsorption ion f interest statement erest statement	530 532 532
	25.2	applic and th corros Carbohydrate inhibitors	ations of carbohydrates eir derivatives as ion inhibitor s as green corrosion ate-based corrosion			26.7 26.8 Deck Conf Auth	Mechani Conclusi aration of lict of int	ism of adsorption ion f interest statement erest statement	530 532 532 532

27.	ligni	rent applications of fatty acids, in, and lipids as green corrosion bitors			28.6	Commercial applications of biomolecules 28.6.1 Cosmetics	555 555
	Ali D and I	ehghani, Bahram Ramezanzadeh, Mohammad Mahdavian			28.7	28.6.2 Detergents Preparation/synthesis of	558
					20.0	nanomaterials	558
		Introduction	535		28.8	Biofuels	560
		27.1.1 Introduction to corrosion and			28.9	,	560
		electrochemical factors	535		28.10	Industrial applications of	
		27.1.2 Corrosion inhibitors and				biomolecules	562
		their mechanisms	536			28.10.1 Pharmaceutical	
		27.1.3 Green corrosion inhibitors	537			industries	562
	27.2	Lignin usage as a corrosion				28.10.2 Food and fermentation	
		inhibitor	538			industries	562
		27.2.1 Definition of lignin	538			28.10.3 Textile industries	563
		27.2.2 Anticorrosion impacts of lignin				28.10.4 Animal husbandry and	
		in the solution phase	539			leather industries	563
		27.2.3 Anticorrosion impacts of				28.10.5 Polymer industries	564
		lignin in the coating phase	541			28.10.6 Paper and pulp industries	564
	27.3	Fatty acids	542			28.10.7 Organic synthesis	
		27.3.1 Introducing fatty acids	542			industry	565
		27.3.2 Anticorrosion impacts of fatty	٠		28.11	Waste treatment	565
		acids in the solution phase	542		28.12	Conclusions	566
		27.3.3 Anticorrosion impacts of fatty acids	٠.2		Refere	ences	566
		in the coating phase	543		Furthe	er reading	574
	27 4	Introducing lipid categories	2 12			0	
		(except fatty acids)	544				
		27.4.1 Types of lipids	544	29.	Curr	ent applications of	
		27.4.2 Anticorrosion impacts of lipids	5			olecules in artificial	
		in the solution phase	544			ligence and machine learning	
		27.4.3 Anticorrosion impacts of lipids	511		meen	ingeniee and machine rearring	
		in the coating phase	545			Gade, Ashutosh Dixit,	
	27 5	Conclusion	545		Rajino	ler Singh Sodhi, and Reena Rawat	
		rences	545		29.1 J	Introduction	575
	ite ie i	circes	٥.٠			Applications	576
						29.2.1 Approaches of machine learning	•,0
28.	Curi	rent industrial- and			_	for protein-protein	
		mercial-scale applications of				interaction	576
	hion	nolecules			29.3 I	Hot spot prediction by ML	570
	DIO	noiecules				approaches	578
	Jaya \	V. Gade, Anshul Singh,				Molecular modeling in drug	376
	and E	Bhawana Jain				design by ML	579
	28.1	Introduction	551			Machine learning approaches for	319
	28.2	Origin of biomolecules	551			oredicting biomolecule-disease	
	28.3	Classification of biomolecules	552		-	associations	580
	20.5	28.3.1 Carbohydrates (sugars and	334			29.5.1 Machine learning-based	200
		starches)	552		-	S S	500
			553		20 6 1	prediction techniques Prediction of various biomolecule	582
		28.3.2 Lipids (fats and oils)					
		28.3.3 Amino acids and proteins	553			relationships in the molecular	£0.4
		28.3.4 Nucleotides and nucleic	EEA			Association network	584
	00.4	acids	554			Conclusion	585
	28.4	Characteristics of biomolecules Production of biomolecules	554 555		Confli	ct of interest	585
	78.5	ecoaction of biomblecilles	333		Ketere	PHOPS	585

30.		nt extracts as bio-based corrosive materials			Web	0 Conclusion	614 614 614
	Abhi and A	nay Thakur, Humira Assad, Savas Kaya, Ashish Kumar			References		
	30.1	Introduction 30.1.1 Financial loss due to corrosion	591	31.		cent advancements in sensing and biosensors	
		and impact on the economy 30.1.2 Failures/accidents happened	592		Abh	ninay Thakur, Humira Assad, Savas Kaya, Ashish Kumar	
		due to corrosion	592		24.4	Lating division	(20
	30.2	Green corrosion inhibitors	593		31.1	Introduction	620
		30.2.1 Plant extract preparation	593			31.1.1 The basic principle of	(20
		30.2.2 Plant extract as a corrosion				biosensors	620
		inhibitor of mild steel	595			31.1.2 Working of biosensor	621
		30.2.3 Plant extract as a corrosion				31.1.3 Basic characteristics of	
		inhibitor of stainless steel	596			biosensors	621
		30.2.4 Plant extract as corrosion			31.2	Types of biosensors	621
		inhibitors of aluminum	597			31.2.1 Optical-based biosensor	621
		30.2.5 Plant extract as corrosion	•			31.2.2 Surface plasmon resonance	
		inhibitors of other metals				(SPR) biosensors	622
		and alloys	598			31.2.3 Electrochemical (EC)	
	30.3	Effect of temperature and immersion				biosensors	623
		time on inhibition efficiency	599			31.2.4 Piezoelectric-based	
		30.3.1 Effect of temperature	599			biosensor	623
		30.3.2 Effect of immersion time	599			31.2.5 Thermal biosensor	623
	30.4	Corrosion-monitoring			31.3	Applications of biosensors	624
		techniques	601			31.3.1 In food industry	624
		30.4.1 Weight loss method (WL)	601			31.3.2 In fermentation industries	624
		30.4.2 Electrochemical impedance				31.3.3 In medical field	625
		spectroscopy (EIS)	602			31.3.4 Biosensors as a tool for	
		30.4.3 Potentiodynamic				biopharmaceutical	
		polarization	604				625
		30.4.4 Electrochemical frequency				31.3.5 In agricultural field	626
		modulation	605			31.3.6 Biosensors for detection of	
		30.4.5 Scanning electron microscopy				,	626
		(SEM)	605			31.3.7 Virus and toxic elements detection	
		30.4.6 Atomic force microscopy				in water environment using	
		(AFM)	605			biosensors	626
		30.4.7 Computational chemistry				31.3.8 For detecting critical	
		techniques	605				627
	30.5	Role of artificial intelligence and			31.4	Biosensors for the diagnostic	
		machine learning in early corrosion					628
		detection and intervention	607		31.5	Advantages and disadvantages	
		30.5.1 Artificial intelligence (AI)	607				628
		30.5.2 Machine learning	609			31.5.1 Advantages	628
	30.6	Mechanism of corrosion				31.5.2 Disadvantages	629
		inhibition	610		31.6	Innovations in the field of	
	30.7	Other significant uses of plant				biosensing and biosensors	629
		extracts and patents in the field					630
		of GCIs	611				630
	30.8	Advantages and disadvantages of			Refe	erences	630
		green Cls	612				
	30.9	Research gaps and future					
		directions	613	Index	x		633